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1 Introduction

The problem of testing for cointegration among economic variables has been a central issue in
the literature of cointegrated time series. Usually, testing is carried out by means of residual
based procedures that consist of extensions of unit root tests, that is, one tests whether the
residuals from the cointegrating regression contain a unit root or, by contrast, are I(0). The
null hypothesis is, thus, of no cointegration, against the alternative of cointegration. However,
this approach seems unnatural, especially if one takes the existence of a long run equilibrium
relationship between the variables as the hypothesis of interest, stemming from economic theory
(for example, the link between consumption and disposable income). With cointegration as the
null hypothesis, one would reject it only if the data would provide strong evidence against the
maintained hypothesis, unlike the situation where the hypotheses are reversed.

There have been some attempts to test directly for cointegration'. One route has been to
extend existing univariate test procedures to test for an I(0) null against an I(1) alternative, such
as the tests advocated by Kwiatkowski, Phillips, Schmidt and Shin (1992, henceforth KPSS),
Leybourne and McCabe (1994) and Saikkonen and Lukkonen (1993), among others (see Stock,
1994 for a survey). These tests emerged from the apparently unrelated literature on testing for
unit moving average roots (see Tanaka, 1990, for example) and testing time-varying parameters
(see Nabeya and Tanaka, 1988, inter alia), and are one-sided LM tests with asymptotic optimal
local power properties (see Stock, 1994). In this way, Leybourne and McCabe (1993), Shin
(1994), Harris and Inder (1994) and McCabe, Leybourne and Shin (1997) devised tests that
generalize the so-called KPSS statistic to the context of cointegration. The main difference
between these versions lies on the proposed estimation method to obtain the residuals and the
variance, subsequently used to construct the test statistic.

A related test was suggested by Hansen (1992), although it was primarily conceived to
test for parameter instability in cointegration models. Under the alternative hypothesis, each
coefficient in the model is allowed to follow a random walk, so by testing the stability of the
estimated parameters, one is also testing for cointegration. On the other hand, Park (1990)
developed a test for the null of cointegration based on the addition of superfluous regressors
to the cointegrating regression. More recently, Xiao (1999) proposed a residual based test that
examines the fluctuation of the residuals from a regression.

The aim of this paper is to compare the relative performance of these testing approaches,
in terms of size and power in finite samples. This is carried out resorting to Monte Carlo

simulation, considering a range of plausible data-generating processes. As of this writing, there

' Despite the ”conceptual pitfalls” discussed by Phillips and Ouliaris (1990).



is no study providing guidance on the use of this type of procedures in empirical situations,
with the exception of the limited studies of McCabe et al. (1997) and Haug (1996). Moreover,
it would be useful to know which tests are best suited for conducting confirmatory analysis,
that is, applying tests for the null of cointegration in conjunction with the standard tests for
the null of no cointegration. If the two approaches give consistent results (i.e., there is an
acceptance and a rejection of the nulls), one may conclude whether the series are cointegrated
or not, whereas if both tests either reject or accept their respective null hypotheses, the results
are inconclusive. See, for example, Shin (1994) and Maddala and Kim (1998) for a discussion,
as well as Charemza and Syczewska (1998) and Carrion-i-Silvestre, Sansé-i-Rossellé and Ortuno
(2001) for an application to the univariate case.

Besides the distinctions in the way each test is constructed, another important issue investi-
gated in this paper is the impact on size and power of choosing different procedures to estimate
the long run variance of the errors. Most of the tests analyzed here depend on the estimation of
this nuisance parameter, and it is well known that the use of semi-parametric estimators may
lead to substantially oversized tests in samples of small size. Some results are known for sta-
tionarity tests (see Lee, 1996 and Hobijn, Franses and Ooms, 1998), but there is little evidence
concerning tests for cointegration, although one may expect similar conclusions.

The paper is organized as follows. Section 2 presents a general model of cointegration and
reviews the methods for estimating the long run variance. In section 3, the tests for the null
of cointegration are presented. The DGPs for the Monte Carlo experiments, as well as the

simulation results, are analysed in section 4. Section 5 summarizes and concludes.

2 The Model

Since each test was derived under a specific model, it is difficult to present a common formulation

for all tests. Nevertheless, we may write a general model as
ye =+ 3,8+, (1)

where y; is a scalar I(1) process and z; is a vector I(1) process of dimension k, such that
Axy = v, v, being a k-vector stationary process. For simplicity, we concentrate on the single
equation specification with an intercept, although more general specifications could be considered
(e.g., containing time trends). The variables y; and x; are said to be cointegrated if u; is I(0),
whereas if u; is I(1) there is no long run equilibrium relationship between y; and ;.

Some tests differ on how the disturbance term is specified under the alternative hypothesis of

no cointegration, as will be seen later. Under the null hypothesis of cointegration, ;, = (ut,vé)’



follows a general stationary process obeying some mild regularity conditions (as stated in Phillips

and Durlauf, 1986, for example) and satisfies a multivariate invariance principle, such that

[T
T_l/zzgtéB(r), as T — oo.
t=1
Here, ”=" denotes weak convergence, [.] is the integer part operator and B(r) is a k + 1 di-

mensional Brownian motion defined on r € [0,1], with long run covariance matrix € ::,lim

—0o0
Var(T’l/ 237¢,). These conditions allow for any stationary and invertible ARMA process, pos-
sibly with heterogeneous innovations.

We partition B(r) conformably with ¢, = (u¢,v,)" as B(r) = [Bi(r), Ba(r)'] and
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where w11 is the long run variance of u;. We will restrict our attention to the case where
cointegration among the regressors is excluded, so that €215 is positive definite. If we allow for
correlation between u; and v, then an asymptotically efficient estimation method should be
used to account for the endogeneity of the regressors, such as the fully-modified OLS method
of Phillips and Hansen (1990) or the leads and lags OLS estimator of Saikkonen (1991), for
example. In this case, we are also interested in the long run variance of u; conditional on vy,
defined by wio = w11 — 9129'22(221, which plays an important role in the construction of the
test statistics studied in this paper.
The long run variance is usually estimated from

l

82(1) :ﬁ/0+2zw(jvl)’?jv (2)

where §; = T~! EthjH Wy (j = 0,1,..T) is the estimate of the j-th autocovariance and
w(j,l) is a kernel function depending on a bandwidth parameter (or truncation lag) [. Thus,
the estimation depends on the chosen kernel and on the procedure to truncate the number of
autocovariances.

Here, we compare three widely used kernels, namely the Parzen, the Bartlett and the
Quadratic Spectral (QS) kernels (see Andrews, 1991). Concerning the truncation lag selec-
tion, we compare an exogenous procedure suggested by KPSS (1992), among others, and the
data-dependent bandwidth selection procedure of Andrews (1991). The first method selects {
based on a deterministic function of the sample size T, namely [(z) = integer[z(T/100)/4] (sece
Schwert, 1989, KPSS, 1992 and Lee, 1996). The problem here is the choice of x: if = is to

large, the long run variance will be overestimated and the tests will have low power, whereas if



x is small, tests will tend to be oversized. We consider several values for x (z = 4,10, 12, 16)2.
The second method is data-based and non-parametric, consisting of obtaining, for a given ker-
nel, the optimal bandwidth parameter sequence that minimizes asymptotic mean square errors.
Andrews (1991) suggested the use of an automatic plug-in bandwidth estimator, which has the

form

b
Il

1.1147[a(1)T] V3, (Bartlett kernel)
[ = 2.6614[a(2)1]"/5, (Parzen kernel)

b
Il

1.3221[a(2)T]V°,  (QS kernel),

where (1) and &(2) are obtained from fitting AR(1) regressions to the residuals. This procedure
has the advantage of removing the arbitrariness associated with the choice of [ as in the first
method.

Further refinements have been recently proposed, namely a ”pre-whitening” procedure (see
Andrews and Monahan, 1992) that filters the residuals with an AR regression in order to make
them closer to white noise and then calculate the spectral density at the origin. However,
this method renders null of cointegration tests inconsistent, since under the alternative of no
cointegration (i.e., a unit root in the residuals) the AR estimate would be close to unity, the long
run variance would tend to infinity and, thus, the tests statistics close to zero® (see discussion
in Lee, 1996 and Shin, 1994).

Another possibility is the procedure proposed by Newey and West (1994), which is similar to
the method of Andrews (1991), although they use non-parametric estimation to construct the
automatic plug-in bandwidth estimator, instead of AR(1) regressions. The application of this
method to stationarity tests is documented in Hobijn et al. (1998). Despite the obvious interest

in comparing the Newey-West and Andrews’s procedures, we will not pursue that here.

3 Tests for the Null Hypothesis of Cointegration

In this section, we will briefly describe the cointegration tests examined in the subsequent Monte
Carlo study. As said earlier, we may group the tests into four different categories, according to

the way the test is constructed.

?1 = 10 is the value recommended by Shin (1994) for the computation of his test.
3This fact helps to explain the poor performance of null of cointegration tests in Haug’s (1996) study, since he

uses prewhitening to construct the test statistics.



3.1 Variable addition test

Park (1990) suggested an approach for testing the null hypothesis of cointegration, which consists

of including a set of superfluous regressors z; in the cointegration regression, so that
Y =+ 1,0 + 2,6 + ey (3)

If the variables in 1 are truly cointegrated, then the added regressors in 3 will not be significant,
while the opposite holds if the regression is spurious. Standard significance tests (such as Wald)
will be able to discriminate between the two situations. The test statistic may be written as

_ RSS; — RSS;

W1.2

Ji (4)

where RSST and RSS, are, respectively, the residual sum of squares from 1 and 3. The denom-
inator is an estimate obtained with a consistent estimator of the (conditional) long run variance
of ug. A particular advantage of this test is that under the null hypothesis of cointegration (i.e.,
6 = 0), J1 has a limiting x?(p) distribution, where p is the dimension of the set of superfluous
regressors, therefore avoiding extensive tabulations. If the alternative is true, J; diverges at a
rate dependent on the chosen bandwidth for @y 5.

Park (1990) recommends the inclusion of the most irrelevant polynomial time trends or
artificially generated random walks as superfluous regressors. For the Monte Carlo experiments,
we use z; = (t,1%,3). Regarding the estimation method, the J; test may be implemented with
any asymptotically efficient procedure!, and we use the Canonical Cointegration Regression

(CCR) method developed by Park (1992), which is similar to FM-OLS’.

3.2 Fluctuation Test

A different approach is followed by Xiao (1999), by deriving a residual based test for the null of
cointegration based on the fluctuation of the residuals 4, from the cointegrating regression. The
idea is quite simple: if cointegration holds, the residuals will replicate the stationary behaviour
of the errors and will display a limited amount of fluctuation, whilst if the residuals will fluctuate
too much the converse should be true.

The fluctuation principle was originally proposed to study the stability of the estimated

coefficients of a model (see Ploberger, Kriamer and Kontrus, 1989, for example). Using the

1Some preliminary simulations using CCR and FM-OLS revealed that the estimation method has no impact

on the performance of the test.
*With FM-OLS, the dependent variable is modified and then regressed on the regressors to obtain estimates

free of nuisance parameters, whereas with CCR, both the dependent variable and the regressors are modified

before applying OLS (see Park, 1992 for details).



FM-OLS method, Xiao (1999) constructs a statistic that is asymptotically free of nuisance

parameters, based on the recursive estimates statistic

Z iy |, (5)

t=1

R = max
i=1...T wl 2T

where ;" are the residuals resulting from FM-OLS estimation. The limiting distribution of

Ry is non-standard and depends only on the dimension of the set of regressors. Xiao (1999)

tabulated Ry for models with no constant, with constant or with trend.

3.3 L. Test

Hansen (1992) proposed some LM-type structural change tests in cointegrated models, making
use of the FM-OLS method. A versatile feature of those tests is the possibility of using them as
cointegration tests. In fact, if the alternative hypothesis is the intercept following a random walk,
then structural change testing becomes cointegration testing, albeit with the null hypothesis of
cointegration. Decomposing u; in 1 such that w; = wy + v, being w; a random walk and v, a

stationary term, the model then becomes
Yyt = o + 3,8+ vy, (6)

with oy = «a + wy, that is, the intercept ”absorbs” the random walk w; when there is no
cointegration.

Having this fact in consideration, Hansen (1992) suggested the use of the statistic
Le=T1Y 5V 4, (7)

to test the null of cointegration, where 3;represents the scores of the FM-OLS estimates and f/i_l
is a weighting matrix based upon an estimate of the covariance matrix of the second-order errors.
However, this statistic was designed to test the stability of the whole cointegration vector, so
there are advantages in regarding a version that tests only (partial) structural change in the
intercept. Hao (1996) has shown that such a test may be carried out by employing the KPSS

statistic to test for the null of cointegration. This is considered next.

3.4 Tests based on the KPSS statistic

The tests previously presented are tests for a general null hypothesis of stationary errors (i.e.
u; in 1 1s I(0)), against a general alternative of I(1) errors. However, it is possible to formulate

with more detail the behaviour of us, both under the null and the alternative. Assume for the



moment that y and x; do not cointegrate and that u; in 1 may be decomposed into the sum of

a random walk and stationary component,
Ut = V¢ + &t (8)

where the random walk is v, = v, 1 + 1, with v, = 0% and 7, distributed as i.z’.d.(O,Cf%)’ while
the stationary part e, is distributed as i.i.d.(0,02)" and is assumed independent of 7, (note the

similarity with the model in 6).

2:

» = 0, so that 7, = 0 and no longer is a

Cointegration results from this formulation when o
random walk. Therefore a test for cointegration has the null hypothesis Hy : (7% = ( against the
alternative Hy : (7% > (. This is the well known unobserved components representation, although
one could also write it as a moving average model (see Stock, 1994). Following KPSS (1992),
an asymptotically equivalent test to the locally best invariant (LBI) test of Hy against H; uses

the LM statistic

T
L= TQ%Tll)Sf, 9)

where S; is the partial sum process S; = 3¢_; @ of the residuals from 1 and s?(1) is a consistent
estimate of the wi1. Allowing for correlation between e; and v calls for the use of an efficient
estimation method and the denominator should be replaced by @i 9, as discussed in section 2.
Different versions of this approach, using distinct estimation methods, have been proposed, as

can be seen next.

3.4.1 Leybourne-McCabe test

Generalizing KPSS (1992), Leybourne and McCabe (1993) suggested a simple version of 9 by
considering an OLS regression of 1 and using the corresponding residuals 4; to construct the
test statistic that we will denote as

2 E?:l (Z;:l aj)Q _

LM =T~ .
w11

(10)
Leybourne and McCabe (1993) suggested estimating wi; with a simple truncated autocovari-
ances estimator. In our simulations, we employ the kernel estimators mentioned in section 2.
3.4.2 Harris-Inder Test

The previous test, by using OLS, does not take into account the potential problems that arise

from second-order biases in the estimation of the cointegrating regression. Harris and Inder

This implies no loss of generality, since (1) contains an intercept.
"The i.i.d. assumption of &; may be relaxed so that e; may follow a stationary process as discussed for u; and

v in section 2.



(1994), using the FM-OLS method, suggested an extension of the KPSS test that considers this

issue®. The test statistic may be written as

HI = T,Q ZIT:I(Z;:I a;L)Q
w1.2

: (11)

where @j represent the FM-OLS residuals as in 8. Note that an estimate of &y o is used rather

than @11 as in 10, reflecting the fact that one is accounting for the possible endogeneity of x;.

3.4.3 Shin Test

Another way of circumventing the problem of endogenous regressors is to use the estimation
method advocated by Saikkonen (1991). The procedure consists of introducing past and future

values of Az, so that the regression becomes

n
Yy = a4 x,3 + Z A.fﬁ';_jﬂ'j + uj. (12)

j=—n
The truncation parameter n should increase with T' at an appropriate rate and may be chosen
with any model selection criterion such as ATC or BIC. To simplify, we use the rule n = [Tl/ 3],
which is also common, and the same value is used for both leads and lags of Ax;. Applying OLS
to the modified regression in 12 will yield efficient estimates, see Saikkonen (1991) for a more
detailed discussion.
A version of 9 may be constructed with the residuals 4} from 12, as

2 Zgzl (Z;’:l a;)Q

w1.2

S=T"

; (13)

thus resulting the Shin test statistic. Shin (1994) recommends fixing [ = 10 when estimating

w12 as a compromise between size distortion and low power.

3.4.4 McCabe-Leybourne-Shin Test

Unlike all the tests discussed previously, which used a non-parametric procedure to correct for
excess correlation in the disturbances, McCabe et al. (1997) devised a parametric approach
to test for the null of cointegration. They extend the parametric adjustment procedure of
Leybourne and McCabe (1994) to the cointegration case, by considering a different formulation

for the error component in 8. In fact, they assume that u; follows

O(L)u = 7y + e, (&)

*Harris and Inder (1994) consider a slightly different model that permits correlation between the random walk

and stationary components of the error.



where ®(L) =1—¢ L —... — ¢,LP is a stable autoregressive polynomial of order p, with ; and
¢+ as defined previously. Under the null hypothesis of cointegration u; is a stationary AR(p)
process, whereas if 0727 > 0, uy becomes non-stationary, with an ARIMA(p,1, 1) representation
(see Leybourne and McCabe, 1994).

In order to implement the test, McCabe et al. (1997) advocate the use of Saikkonen’s
dynamic least squares method to estimate 1, but the autoregressive coefficients ¢, in 14 should
be obtained by maximum likelihood by fitting an ARIMA(p, 1, 1) model to @}, the residuals from
12. In the simulation study, p is fixed (p = 2), since the test does not appear to be sensitive to
the order of the autoregression”. The test statistic is then constructed with the ”second stage”
residuals & = 4} — Y b, ¢,4;_, from 14 as

(Xhe185)?

T
MLS = 72251 =/
a

: (14)

with 62 = T-1 "7, &, being a consistent estimator of o2.

This test has, at least theoretically, some advantages comparatively to other KPSS versions.
Indeed, the test is consistent at a faster rate, i.e. O(T'), and does not depend on any lag
truncation parameter. This should be apparent even in terms of its finite sample performance.
It also allows for cointegration among the regressors, unlike othe tests. However, according
to Hobijn et al. (1998), this test is not consistent for the alternative of a pure random walk,
although this has recently been disputed by Lanne and Saikkonen (2000) for its univariate

version.

4 Monte Carlo Simulations

To evaluate the finite sample performance of the null of cointegration tests discussed above,
we develop a series of Monte Carlo experiments. Of course, direct comparisons of the relative
performances of the tests may be difficult, since they are affected by the choice of the DGPs.
Nevertheless, we try to provide some tentative remarks supported by the results of the simulation

study. The general DGP is similar to McCabe et al. (1997) and is based on the models previously

presented:
Yyt = o+ T+, (15)
o = a1+, o =1, Ny ~ i.i.d.(O,(f%),
Xt = Xt-1 + Ct? Ct ~ i.i.d.(o, ].)7

9This was confirmed with some preliminary simulations and is also evident from the results in McCabe et al.

(1997), although they recommend a data-dependent selection criterion, with general-to-specific testing.

10



& = p&t—1 twi— 90}7&—17 Wt ~ ZZd(O, 1),

with 7, independent of (; and ;. The parameters are allowed to take values p = (0,0.5,0.9,1) and
6 = 0.4 (with p = 0.5). It is also considered the effects of correlation between the errors
(endogeneity of regressors), with corr((;,w:) = v = 0.7 (with p = 0 and 6 = 0, for simplicity)
as in McCabe et al. (1997). The selected sample sizes are 7' = 100 and 200 and the number
of replications is 10000. All simulations were programmed in GAUSS and we used the module
COINT 2.0 to implement long run variance estimation. All results that are mentioned but not
reported are available upon request.

To analyse size and power of the tests under this DGP, we selected the values (0,0.01,0.1)
for (73] (as in McCabe et al., 1997, for instance). Table 1 presents the estimates of rejection
frequencies of the different tests at the 5% level of significance under the null hypothesis (0727 =0)
for the MLS test and the kernel-based tests, computed with the long run variance estimated by
the data-dependent procedure, while Table 2 displays the corresponding results when the fixed
bandwidth method with the QS kernel was used to estimate the long run variance'’. Concerning
the first test, it is relatively well behaved, except for the case of very persistent errors'!. Note
that the correction for endogeneity works quite well, although the test slightly overrejects (for
T = 100) and underrejects (for T' = 200) with ARMA errors.

As for the remaining tests, a general conclusion one can draw is that the choice of kernel does
not seem to play an important role, considering the negligible differences between the results
produced by each of them, which confirms the results of other studies (Lee, 1996 and Hobijn et
al., 1998, for instance). On the other hand, the method for the determination of the bandwidth
induces distinct performances, since in general we obtain worse results when a fixed bandwidth is
used. In this case, an expected trade-off occurs: small values of x will produce better size results
for less autocorrelated errors, while larger x’s are needed for larger values of p. Apparently, the
best balanced choice would be to fix « equal to 10 or 12, as recommended by Shin (1994) for his
test.

Considering each test, we observe that the Shin test tends to be conservative, even for p = 0.9,
when the data-dependent procedure is used, especially with the QS and Parzen kernels. By
contrast, the Harris-Inder test is normally very far from attaining the correct size and performs
quite badly when correlation between (, and w; is introduced, which is somehow intriguing.
Equally, Park’s J; test is badly oversized in both Tables, even for p = 0, dramatically so for
p = 0.9, and for the endogeneity case in Table 1 the problems do not diminish asymptotically.

10Results for the other kernels were not significantly different, so we will omit them to save space.
11 Additional simulations have shown that the size distortions of the M LS test are insignificant for a wide range

of values of p, becoming more considerable only for values larger than 0.8.
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This also constitutes a problem for the Rr fluctuation test, although it performs substantially
better with the other DGPs. The LM test does reasonably well (especially if one considers that
there is no correction for endogeneity), while Hansen’s L. test tends to be slightly oversized,
even when there is no autocorrelation in the errors.

In terms of power, the rejection frequencies when the null is false at the 5% level of significance
are shown in Tables 3 and 4 for data-dependent long run variance estimation, and Table 5, for the
case of (73] = (.1 with fixed bandwidth using the QS kernel. To avoid misrepresenting power due
to size distortions, size-adjusted power is also calculated (in parentheses in the tables) based on
size-corrected critical values obtained from the corresponding results in Tables 1 and 2. Again,

the differences in the results from using different kernels are not substantial, even though the

2:
n

(7% = 0.1 (Tables 3 and 4). On the other hand, if we compare Table 5 with the first part of Table

Bartlett kernel tends to produce lower power for o 0.01 while delivering higher power for
4, we observe that power is lower for tests using fixed bandwidth estimation, except for some
cases with x = 4. In fact, as expected, power deteriorates as x grows and, thus, higher powers
are attained when o = 4.

It is clear that power is very low for all DGPs when 0'% = (0.01. The Shin test has the highest
size-corrected power of all tests, which increases with p, while it remains approximately the
same for other tests, around 5%-6%, despite higher nominal powers. Examining now Table 4,
it is possible to see that power declines with increasing p and that the Shin test is again the
most well balanced procedure in terms of size-corrected power for this set of DGPs. Park’s J;
test does well when autocorrelation is low and for the ARMA structure under study, but has
its (size-corrected) power greatly affected by excessive disturbances correlation. It is interesting
to notice that in all Tables the L. test is the best for the case of endogenous regressors, while
H1 is the worst, which is odd, since both tests use the same method for correcting second-order
biases (FM-OLS). We should also mention that we were unable to closely replicate the results
of McCabe et al. (1997), which report higher powers for the M LS and Shin test, although this
could be explained by some differences in the computation of the test procedures and in the
DGPs.

In order to refine the previous analysis, we compute the power of the tests as a function of
the ratio of the disturbances variances A = o7 /02. As discussed in KPSS (1992), if X is close to
zero, the process is stationary (which means cointegration) and it will tend to a random walk
(no cointegration) as A approaches infinity. This allow us to examine relative power of the tests
in the continuum of the alternative hypothesis, rather than concentrating on two possible points

(0'3] = 0.01,0.1), as in the previous experiment. We considered several values of A ranging from

12



0.0001 to 10, and for simplicity we set p and # equal to zero.

Figures 1 and 2 show the results for the tests computed with data-dependent long run
variance estimation and Figures 3 and 4 reports the case of tests with the fixed bandwidth
method with x = 10, using the QS kernel. The results for the M LS test are graphed in each
figure so that the comparison is clear'?. The most striking feature in this set of experiments is
the non-monotonic power of the Shin and LM test when the data-based estimation is employed.
In fact, when A is larger than 0.4-0.5, power is reduced to a level of around 25-30%.

On the other hand, the M LS test does very well, especially for T" = 200 and when X\ gets
larger, while the Ji test performs better for T'= 100 and smaller A. It is also clear that power
stabilizes after A attains a given value (that varies with the sample size), except for the Shin and
LM tests, as noted before. Comparing the results of the different long run variance estimation
methods, we observe that power is generally lower when the band is fixed at this particular
value, although we could search for a value that would produce similar powers.

Finally, we also consider the case of a pure random walk as the alternative hypothesis, when
p=1and (7% = 0, which is the standard setting for the study of null of no cointegration tests.
This will allow us to check the claim of Hobijn et al. (1998) regarding the inconsistency of
the McCabe et al. (1997) test. From Table 6 it is clear that the M LS does not appear to be
inconsistent, with very reasonable power, growing with the sample size. On the other hand,
the Shin test and the LM display the lowest powers, at the levels predicted by Figures 1 to 4.
Moreover, tests based on data-dependent estimation exhibit lower power, with the exception of

the Jp test. It is interesting to notice that the Parzen kernel seems to work better, especially

with fixed bandwidth.

5 Conclusion

Although less often used, tests for the null hypothesis of cointegration may be a useful instrument
in the analysis of economic time series. Unlike tests for the null of no cointegration, there is
no evidence on the properties of the different tests and their relative merits. This study tries
to fill this gap by analysing the performance of several tests that have been recently proposed.
Conducting a series of Monte Carlo experiments, we found that no test dominates the others in
every situation under study.

However, we would recommend the use of the MLS test, given its reasonable and well-
balanced overall performance. First, this test has, at least theoretically, some advantages, namely

a faster rate of convergence. Secondly, its computation is free of the problems associated with

12The graphs are truncated for larger values of X since the results do not change significantly after unity.
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all the other tests, that is, how the scaling long run variance is obtained. As could be seen from

our experiments, the performance of the tests depends heavily on the method chosen for the

estimation of this nuisance parameter. Although it seems preferable to use a data-dependent

procedure, mainly to control for size distortions, this may lead to substantial reductions in power.

Nevertheless, there is still room for improvements on the performance of this parametric-based

test, as the attempts of Lanne and Saikkonen (2000) point out.
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6 Appendix

Table 1 - Empirical Size (o7=0)

T =100 T =200
P P
Tests 0 0.5 09 6=04 ~=07 0 0.5 0.9 6=04 =07
(p=0.5) (p=0.5)
MLS 0.04 0.07 0.51 0.078 0.06 0.05 0.06 048 0.025 0.052
QS

S 0.02 0.03 0.03 0.051 0.038 0.03 0.04 0.05 0.051 0.045
HI 0.06 0.12 041 0.168 0.581 0.06 0.09 027 0.102 0.583
LM 0.06 0.07r 0.11 0.061 0.101 0.05 0.07 0.09 0.059 0.103
L, 0.09 011 021 0.097 0.074 0.09 0.11 0.12 0.094 0.079
Ry 0.04 0.06 0.17 0.06 0.306 0.04 0.05 0.10 0.047 0.342
J1 0.09 026 074 0348 0.221 0.07 0.18 0.58 0.223 0.211
Bartlett

S 0.022 0.036 0.061 0.061 0.039 0.031 0.05 0.077 0.061 0.045
HI 0.057 0.115 0.274 0.124 0.577 0.062 0.098 0.198 0.089 0.584
LM 0.051 0.082 0.142 0.075 0.101  0.061 0.08 0.119 0.069 0.104
Le 0.093 0.13 0.141 0.107 0.079 0.089 0.13 0.131 0.11 0.081
Ry 0.041 0.065 0.108 0.056 0.305 0.044 0.069 0.082 0.054 0.337
J1 0.08 0.28 0.707 0.333 0.219 0.067 0.203 0.569 0.234 0.212
Parzen

S 0.02 0.03 0.03 0.049 0.037 0.03 0.04 0.05 0.051 0.044
HI 0.06 012 0.41 0.179 0.579 0.06 0.09 0.28 0.105 0.582
LM 0.05 0.07r 0.11 0.061 0.101 0.05 0.06 0.08 0.057 0.103
L 0.09 010 0.22 0.096 0.07 0.09 0.10 0.12 0.091 0.077
Ry 0.04 0.06 0.19 0.061 0.307 0.04 0.06 0.10 0.044 0.34
Ji 0.10 0.28 0.76 0.382 0.223 0.07 0.19 0.61 0.248 0.212

NOTE: Rejection frequencies at the 5% significance level.
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Table 2 - Empirical Size with Fixed Bandwidth (0'727: 0)

T =100 T =200
p 14
Tests «x 0 0.5 0.9 6=04 =07 0 0.5 09 6=04 ~v=0.7
(p=0.5) (p=0.5)
S 4 0.042 0.06 0.24 0.042 0.044 0.045 0.065 0.342 0.051 0.046
10 0.064 0.056 0.117  0.057 0.057  0.051 0.052 0.134 0.052 0.051
12 0.067 0.058 0.101  0.067 0.07  0.058 0.051 0.115 0.055 0.053
16 0.115 0.086 0.096 0.107 0.117  0.06 0.057 0.093 0.059 0.063
HI 4 0.099 0.124 0.393 0.101 0.571  0.068 0.09 0.424 0.072 0.574
10 0.199 0.201 0.311  0.195 0.572  0.115 0.115 0.233  0.108 0.568
12 0.245 024 0316 0.25 0.591 0.138 0.139 0.227  0.14 0.583
16 0.351 0.326 0.373  0.339 0.61  0.181 0.184 0.237 0.181 0.582
LM 4 0057 0.074 0.315 0.058 0.113  0.053 0.074 0.383 0.057 0.114
10 0.075 0.067 0.147  0.068 0.123 0.058 0.06 0.156  0.058 0.112
12 0.081 0.067 0.13  0.076 0.137  0.065 0.058 0.131  0.06 0.117
16 0.101 0.084 0.109  0.098 0.154  0.07 0.066 0.10 0.067 0.126
L 4 0092 0.11 0393 0.089 0.06 0.085 0.12 0.524 0.094 0.068
10 0.151 0.106 0.147 0.0128  0.072 0.102 0.089 0.198 0.096 0.063
12 0.185 0.136 0.128 0.161 0.091 0.116 0.099 0.156 0.106 0.06
16 0303 023 0.142  0.275 0.147  0.13 0.114 0.124  0.119 0.071
Ry 4 0.05 0.056 0.266 0.044 0.328 0.048 0.063 0.366  0.049 0.351
10 0.116 0.08 0.117  0.092 0.376  0.067 0.053 0.121  0.055 0.363
12 0.157 0.101 0.109  0.128 0413  0.08 0.059 0.096  0.067 0.382
16 0.272 0.198 0.142 0.232 0.466  0.116 0.084 0.079 0.101 0.403
J1 4 0.209 0.273 0.708 0.213 0.301  0.119 0.173 0.641  0.127 0.241
10 0.446 0.406 0.704  0.445 0.536  0.248 0.258 0.511  0.249 0.35
12 0.522 0.527 0.719 0.525 0.61  0.314 0.311 0.518 0.316 0.406
16 0.662 0.673 0.788  0.668 0.738 0.409 0.409 0.551 0.416 0.517

NOTE: Rejection frequencies at the 5% significance level using the QS kernel.
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Table 3 - Empirical Power (0'727: 0.01)

T =100 T =200

p 1%
Tests 0 0.5 09 6=04 =07 0 0.5 09 6=04 =07

MLS 0.059 0.085 0.54  0.079 0.067 0.073 0.064 0482 0.025 0.092

(0.069) (0.061)  (0.064)  (0.05) (0.057)  (0.079) (0.061)  (0.06)  (0.046) (0.09)
QS
S 0.062 0.096 0.244 0.052 0.047 0.084 0.087 0.165 0.057 0.086
(0.13)  (0.141) (0.278)  (0.05) (0.059)  (0.117)  (0.10)  (0.165)  (0.054) (0.093)
HI 0.065 0.122 0.401 0.171 0.582 0.085 0.097 0.264 0.085 0.601
(0.055)  (0.05) (0.053)  (0.051) (0.051)  (0.079) (0.057)  (0.05) (0.06) (0.056)
LM 0.058 0.07 0.103 0.063 0.091 0.083 0.076 0.085 0.063 0.139
(0.055)  (0.047)  (0.05) (0.05) (0.058)  (0.082) (0.055) (0.054)  (0.053) (0.081)
L, 0.097 0.105 0.209  0.098 0.111 0.122 0.117 0.113 0.112 0.133
(0.057) (0.048) (0.047)  (0.051) (0.057)  (0.075) (0.054) (0.047)  (0.059) (0.097)
Rr 0.045 0.056 0.174  0.061 0.317 0.068 0.061 0.093 0.053 0.372
(0.056) (0.053) (0.053)  (0.052) (0.054)  (0.079) (0.055) (0.048)  (0.056) (0.077)
J1 0.097 0.268 0.728  0.349 0.234 0.098 0.185 0.56 0.234 0.252
(0.051)  (0.053) (0.051)  (0.05) (0.056)  (0.068) (0.051) (0.048)  (0.05) (0.073)
Bartlett
S 0.062 0.097 0.179 0.061 0.047  0.083 0.093 0.141 0.065 0.086
(0.127) (0.132) (0.162)  (0.051) (0.058)  (0.116) (0.094) (0.105)  (0.055) (0.093)
HI 0.064 0.117 0.273 0.124 0.583 0.084 0.105 0.196 0.99 0.605
(0.058)  (0.052)  (0.05)  (0.051) (0.051)  (0.08) (0.058) (0.052)  (0.058) (0.055)
LM 0.058 0.085 0.143 0.075 0.113 0.08 0.089 0.116 0.075 0.139
(0.058) (0.051) (0.051)  (0.051) (0.057)  (0.078) (0.059) (0.051)  (0.052) (0.081)
Le 0.10 0.129 0.141 0.107 0.096 0.121 0.135 0.129 0.11 0.139
(0.057) (0.051)  (0.05) (0.05) (0.064)  (0.075) (0.055) (0.046)  (0.051) (0.097)
Rr 0.046 0.067 0.109 0.056 0.314 0.07 0.077 0.086 0.059 0.373
(0.056) (0.051) (0.051)  (0.05) (0.053)  (0.078) (0.057) (0.053)  (0.055) (0.077)
J1 0.088 0.281 0.705 0.335 0.232 0.092 0.211 0.559 0.241 0.256
(0.056) (0.053)  (0.05)  (0.049) (0.058)  (0.072) (0.051) (0.052)  (0.05) (0.073)
Parzen
S 0.063 0.097 0.258 0.05 0.047 0.082 0.088 0.179 0.054 0.085
(0.131)  (0.149)  (0.297)  (0.051) (0.059)  (0.116) (0.104) (0.185)  (0.054) (0.092)
HI 0.067 0.126 0.418 0.18 0.58 0.083 0.101 0.278 0.113 0.601
(0.055) (0.049)  (0.05)  (0.049) (0.05) (0.08)  (0.057) (0.056)  (0.057) (0.056)
LM 0.058 0.066 0.108  0.062 0.111 0.08 0.074 0.081 0.06 0.139
(0.055) (0.048) (0.049)  (0.049) (0.057)  (0.078)  (0.06)  (0.05)  (0.053) (0.081)
L, 0.096 0.098 0.22 0.095 0.086 0.12 0.111 0.111 0.092 0.133
(0.057)  (0.048) (0.048)  (0.05) (0.06)  (0.076)  (0.055) (0.042)  (0.05) (0.097)
Rr 0.045 0.052 0.188  0.062 0.315 0.069 0.06 0.102 0.052 0.372
(0.056) (0.051)  (0.05)  (0.051) (0.054)  (0.078) (0.053) (0.049)  (0.057) (0.077)
J1 0.103 0.285 0.756  0.384 0.234 0.103 0.20 0.559  0.258 0.252
(0.051)  (0.054)  (0.05) (0.05) (0.056)  (0.072) (0.052)  (0.05) (0.05) (0.073)

NOTE: Rejection frequencies at the 5% significance level. In parentheses are the size-adjusted rejection frequencies

based on finite-sample critical values.
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Table 4 - Empirical Power (0'727: 0.1)

T =100 T =200

P P

Tests 0 0.5 09 6=04 =07 0 0.5 09 6=04 =07
(p=0.5) (p=0.5)

MLS 0.309 0.177 0.541  0.109 0.418 0.662 0.361 0.512  0.078 0.789
(0.328) (0.143) (0.068)  (0.076) (0.392)  (0.671) (0.355) (0.077)  (0.132) (0.785)

QS
S 0.424 0.23 0.258  0.095 0.367 0.698 0.402 0.203 0.215 0.721
(0.547)  (0.291)  (0.29)  (0.093) (0.408)  (0.753) (0.432) (0.203)  (0.212) (0.738)
HI 0.433 0.263 0.411 0.24 0.759 0.705 0.421 0.303 0.322 0.903
(0.403)  (0.141)  (0.052)  (0.07) (0.094)  (0.692) (0.335) (0.061)  (0.22) (0.242)
LM 0.419 0.212 0.111 0.138 0.446 0.701 0.394 0.112 0.276 0.728
(0.411)  (0.17)  (0.055)  (0.117) (0.341)  (0.70)  (0.345) (0.072)  (0.256) (0.636)
Le 0.469 0.209 0.204 0.14 0.581 0.771 0.423 0.128 0.264 0.877
(0.387)  (0.117) (0.048)  (0.079) (0.516)  (0.704)  (0.29)  (0.054)  (0.175) (0.838)
Rr 0.378 0.154 0.177  0.103 0.616 0.694 0.339 0.108 0.211 0.863
(0.40)  (0.149) (0.051)  (0.086) (0.246)  (0.713) (0.328) (0.058)  (0.217) (0.531)
J1 0.5649 0.462 0.75 0.407 0.674 0.82 0.622 0.611 0.541 0.901
(0.455)  (0.175) (0.056)  (0.107) (0.449)  (0.793) (0.421) (0.069)  (0.265) (0.787)
Bartlett
S 0.431 0.244 0.187 0.111 0.379 0.714 0.423 0.172 0.237 0.73
(0.552) (0.289) (0.168)  (0.096) (0.42)  (0.767) (0.424) (0.128)  (0.218) (0.745)
HI 0.442 0.268 0.286  0.208 0.781 0.727 0.442 0.231 0.323 0.92
(0.425)  (0.166) (0.048)  (0.102) (0.133)  (0.722)  (0.34)  (0.062)  (0.243) (0.294)
LM 0.427 0.24 0.154 0.159 0.457 0.714 0.425 0.149 0.299 0.734
(0.424)  (0.18)  (0.055)  (0.121) (0.349)  (0.711)  (0.352) (0.075)  (0.261) (0.641)
L, 0.491 0.251 0.14 0.165 0.615 0.791 0.464 0.154 0.303 0.895
(0.404)  (0.133)  (0.048)  (0.085) (0.557)  (0.721)  (0.295)  (0.056)  (0.193) (0.858)
Rr 0.396 0.183 0.114 0.113 0.652 0.715 0.37 0.101 0.241 0.886
(0.422)  (0.15)  (0.05) (0.10) (0.299)  (0.73)  (0.326) (0.061)  (0.231) (0.578)
J1 0.544 0.482 0.721 0.456 0.684 0.829 0.645 0.60 0.553 0.909
(0.48)  (0.175)  (0.054)  (0.111) (0.464)  (0.812)  (0.42)  (0.067)  (0.277) (0.80)
Parzen
S 0.413 0.224 0.272 0.093 0.352 0.693 0.386 0.20 0.207 0.699
(0.542) (0.294) (0.307)  (0.093) (0.395)  (0.751) (0.423) (0.209)  (0.206) (0.714)
HI 0.424 0.26  0.403 0.245 0.746 0.702 0.412 0.313 0.315 0.891
(0.396)  (0.136) (0.049)  (0.07) (0.076)  (0.696) (0.318) (0.058)  (0.212) (0.192)
LM 041 0.204 0.115 0.134 0.436 0.697 0.381 0.111 0.264 0.713
(0.401)  (0.167) (0.055)  (0.112) (0.33)  (0.696) (0.343) (0.072)  (0.249) (0.619)
L, 0.456 0.188 0.222 0.13 0.56 0.762 0.393 0.129 0.236 0.864
(0.376)  (0.11)  (0.048)  (0.07) (0.503)  (0.692) (0.272)  (0.05)  (0.157) (0.822)
Ry 0.366 0.142 0.193 0.099 0.60 0.677 0.314 0.113 0.194 0.844
(0.393)  (0.14)  (0.051)  (0.082) (0.215)  (0.695) (0.297) (0.059)  (0.206) (0.481)
J1 0.556 0.482 0.774 0.501 0.67 0.827 0.63 0.641 0.561 0.896

(0.453)  (0.177) (0.055)  (0.109) (0.442)  (0.796)  (0.41)  (0.065)  (0.266) (0.781)

See Notes to Table 3.

20



Table 5 - Empirical Power with Fixed Bandwidth (0727: 0.1)

T =100 T =200

P 1%

Tests «x 0 0.5 09 #=04 ~=07 0 0.5 0.9 6=04 ~=07
(p=0.5) (p=0.5)

S 4 0.242 0.15 0.245 0.114 0.30  0.552 0.373 0.385  0.277 0.644
(0.266)  (0.133)  (0.052)  (0.094) (0.314)  (0.57)  (0.334) (0.071)  (0.239) (0.653)

10 0.19 0.121 0.125  0.099 0.218 0392 0.279 0.164 0.222 0.45
(0.166) (0.111)  (0.056)  (0.092) (0.21)  (0.386) (0.274)  (0.07)  (0.218) (0.446)

12 0.183 0.116 0.113  0.097 0.207  0.357 0.261 0.146  0.201 0.394
(0.149)  (0.105)  (0.056)  (0.085) (0.169)  (0.336) (0.259) (0.071)  (0.185) (0.388)

16 0.189 0.133 0.106  0.129 0.197 0313 0.23 0.112 0.192 0.335
(0.089) (0.083) (0.058)  (0.068) (0.101)  (0.294) (0.212) (0.063)  (0.181) (0.307)

HI 4 0394 0273 0.397 0.216 0.652 0.647 0.47 0.467 0.371 0.596
(0.297)  (0.153)  (0.053)  (0.108) (0.038)  (0.603) (0.381) (0.074)  (0.281) (0.051)

10 0.405 0.302 0.318 0.271 0.553 0.521 0.395 0.271  0.327 0.649
(0.133)  (0.081) (0.051)  (0.065) (0.022)  (0.361) (0.263) (0.067)  (0.201) (0.011)

12 0.419 0.336 0.332  0.308 0.539  0.487 0.394 0.26  0.343 0.598
(0.089) (0.072)  (0.05)  (0.069) (0.017)  (0.30)  (0.228) (0.061)  (0.173) (0.012)

16 0.468 0.402 0.38  0.385 0.54 0.469 0.391 0.262  0.343 0.552

(0.07)  (0.061) (0.05)  (0.058) (0.023)  (0.194) (0.138) (0.062)  (0.131) (0.01)
LM 4 0.36 0.228 0.331  0.168 0.382 0.644 047 0.467 0.349 0.654
(0.345)  (0.184) (0.053)  (0.139) (0277)  (0.638) (0.381) (0.074)  (0.288) (0.53)

10 0.29 0.178 0.165 0.142 0.307  0.48 0.395 0.271  0.279 0.502
(0.235)  (0.151)  (0.152)  (0.111) (0.196)  (0.458) (0.263) (0.067)  (0.254) (0.388)

12 0.276 0.173 0.144  0.129 0.291 0487 0.394 026  0.269 0.454
(0.215)  (0.142)  (0.058)  (0.111) (0.169)  (0.30)  (0.228) (0.061)  (0.232) (0.343)

16 0.253 0.175 0.125  0.155 0.267  0.381 0.287 0.129  0.239 0.395
(0.16)  (0.119) (0.103)  (0.099) (0.124)  (0.341) (0.256) (0.074)  (0.202) (0.273)

L, 4 0375 0.239 0.401 0.192 0.42 0.692 0.501 0.56  0.394 0.773
(0.28)  (0.139) (0.047)  (0.101) (0.392)  (0.624) (0.364) (0.069)  (0.258) (0.739)

10 0.244 0.168 0.155 0.151 0.218 0479 0.344 0.236 0.271 0.527

(0.09) (0.085) (0.054)  (0.07) (0.167)  (0.352) (0.248) (0.067)  (0.195) (0.489)

12 0.232 0.171 0.137 0.161 0.191 0412 0.307 0.193 0.242 0.435

(0.051)  (0.057) (0.053)  (0.061) (0.102)  (0.262) (0.207)  (0.07)  (0.152) (0.40)

16 0.252 0.221 0.149  0.23 0.173 0319 0.245 0.132  0.193 0.308

(0.019)  (0.039) (0.049)  (0.042) (0.04)  (0.167) (0.132) (0.157)  (0.10) (0.255)

Ry 4 0.301 0.174 0.272  0.127 0478 0.604 0.414 0.41 0.315 0.744
(0.301) (0.165) (0.051)  (0.121) (0.097)  (0.614) (0.383) (0.076)  (0.284) (0.33)

10 0.24 0.144 0.122 0.12 0.341 0.405 0.285 0.152  0.218 0.494
(0.119)  (0.094) (0.056)  (0.071) (0.027)  (0.367) (0.279)  (0.07)  (0.225) (0.049)

12 0.232 0.158 0.114 0.133 0.312 0.353 0.263 0.121  0.204 0.429
(0.075) (0.077)  (0.05)  (0.071) (0.021)  (0.278) (0.239) (0.065)  (0.183) (0.029)

16 0.265 0.209 0.145 0.206 0.321 0.29 0.225 0.098  0.19 0.334
(0.052) (0.059) (0.052)  (0.065) (0.021)  (0.149) (0.149) (0.064)  (0.129) (0.015)

J1 4 0.62 0.469 0.728  0.389 0.672 0.817 0.631 0.674 0.507 0.865
(0.384)  (0.162)  (0.053)  (0.104) (0.363)  (0.745) (0.448)  (0.07)  (0.209) (0.717)

10 0.743 0.616 0.705  0.559 0.753  0.821 0.649 0.563 0.573 0.84
(0.274)  (0.132)  (0.058)  (0.099) (0.244)  (0.62)  (0.36) (0.071)  (0.254) (0.578)

12 0776  0.671 0.721  0.611 0.79 0.825 0.693 0.564  0.60 0.84

(0.242)  (0.122)  (0.056)  (0.086) (0.21)  (0.549) (0.342) (0.072)  (0.234) (0.531)
16 0.845 0.781 0.79  0.741 0.845 0.846 0.733 0.584  0.667 0.858
(0.205)  (0.105) (0.052)  (0.074) (0.175)  (0.48)  (0.29)  (0.06) (0.18) (0.444)
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Table 6 - Power with the Random Walk Alternative

Tests T =100 T =200
MLS 0.773 0.893

QS Data-based x =10 Data-based =10
S 0.261 0.501 0.292 0.814
HI 0.541 0.684 0.655 0.876
LM 0.343 0.663 0.351 0.871
L. 0.359 0.686 0.535 0.915
Rr 0.278 0.534 0.44 0.817
J1 0.936 0.928 0.941 0.96
Bartlett
S 0.261 0.606 0.299 0.875
HI 0.481 0.757 0.478 0.921
LM 0.35 0.753 0.35 0.919
L. 0.258 0.792 0.261 0.953
Rr 0.229 0.637 0.233 0.889
J1 0.924 0.943 0.93 0.969
Parzen
S 0.267 0.703 0.303 0.93
HI 0.597 0.836 0.757 0.958
LM 0.337 0.831 0.343 0.957
L 0.419 0.882 0.635 0.981
Ry 0.335 0.753 0.535 0.943
Ji 0.944 0.955 0.951 0.977

NOTE: Rejection frequencies at the 5% significance level. The QS kernel is used with the
fixed bandwith.
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Figure 1: Power as a function of A (7' = 100, automatic bandwidth)
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Figure 2: Power as a function of A (7' = 200, automatic bandwidth)
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Power

Figure 3: Power as a function of A (7" = 100, fixed bandwidth)
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Power

Figure 4: Power as a function of A (7" = 200, fixed bandwidth)
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