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Abstract

In this paper we examine the properties of several cointegration tests when long run

parameters are subject to multiple shifts, resorting to Monte Carlo methods. We assume

that the changes in cointegration regimes are governed by a unobserved Markov chain process.

This speci…cation has the considerable advantage of allowing for an unspeci…ed number of

stochastic breaks, unlike previous works that consider a single, deterministic break. Our

Monte Carlo analysis reveals that testing cointegration with the usual procedures is a quite

unreliable task, since the performance of the tests is poor for a number of plausible regime

shifts parameterizations.
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1 Introduction

The concept of cointegration has dominated the debate in time series econometrics in the past

decade, by stressing the possible existence of long run equilibrium relationships among non-

stationary variables. More recently, researchers became concerned with the e¤ects that structural
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changes may have on econometric models. Indeed, failure to detect and account for parameter

shifts is a serious form of misspeci…cation, therefore a¤ecting inference and leading to poor

forecasting performances (see Clements and Hendry, 1999, for example). This is especially

relevant for cointegration analysis, since it normally involves long time spans of data, which,

consequently, are likely to display structural breaks. Several papers deal with this possibility

in a number of empirical applications, such as money demand, term structure of interest rates,

purchasing power parity, among others (see references below).

Therefore, it is natural to ask what is the impact of possible multiple parameter changes

on the …nite-sample power and size properties of several cointegration tests. In this paper,

we investigate this issue in a single-equation framework, resorting to Monte Carlo methods.

We assume that distinct cointegration regimes may exist, in which the shifts are governed by

an unobserved Markov chain process. This speci…cation has the considerable advantage of

allowing for an unspeci…ed number of endogenous, stochastic breaks, unlike previous works that

either consider a single, deterministic break or assume that the break points are known when

cointegration is being tested.

We also analyse the implications of changing variances in the error process, an issue that

was not considered in previous literature. Furthermore, we study the properties of distinct

cointegration tests. Besides the ”classical” Augmented Dickey-Fuller (ADF) test, we analyse

the performance of Phillips-Ouliaris tests and of cointegration tests developed by Gregory and

Hansen (1996). The latter are conceived to be robust to regime shifts in the cointegration

vector. It is natural, thus, to question how robust will they be to Markov regime switches. On

the other hand, we also look at the behaviour of the KPSS-type test for the null hypothesis of

cointegration derived by McCabe, Leybourne and Shin (1997). The robust-to-breaks test for

the null of cointegration suggested by Hao (1996) is also considered.

Markov switching models have been extensively (and successfully) used to characterize and

account for regime changes that typically occur in economic and …nancial time series, such as

GDP, stock prices, interest rates, in‡ation rates or exchange rates, for example (see Kim and

Nelson, 1999 for a survey). Given their ‡exibility, it would be natural to extend their use to

model changes in long run relationships. Hall, Psaradakis and Sola (1997) and Krolzig (1997), for

example, illustrate the usefulness of such a speci…cation by analysing the Japanese consumption

function and co-movements in international business cycles, respectively. Nevertheless, none of

the papers analyses explicitly the e¤ects of Markov-type of changes on cointegration tests.

Since the seminal work of Perron (1989), it is known from the literature on unit roots and
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structural breaks (see Maddala and Kim, 1998 and Stock, 1994 for surveys) that unit root tests

have di¢culties (i.e. low power) in distinguishing between an I(1) series and I(0) processes

with breaks. Conversely, Leybourne, Mills and Newbold (1998) and Leybourne and Newbold

(2000) demonstrate that the routine application of the Dickey-Fuller test when the true process

is I(1) with a relatively early break leads to more frequent rejections of the null of a unit root.

However, Lee (2000) disputes this result, arguing that it is due to e¢ciency losses, given that the

…rst observation is discarded when computing the DF test. Tests using the full unconditional

likelihood will not su¤er from this ”spurious stationarity” phenomenon.

On the other hand, the implications of breaks for the performance of stationarity tests was

studied by Lee, Huang and Shin (1997). They show that these tests, when used ignoring an

existing break in a stationary process, will be biased towards rejecting the null of stationarity in

favour of the false alternative of a unit root. Notwithstanding this, there will be no power losses

if the unit root alternative is true, since the limiting distribution is asymptotically invariant

to this type of shifts. We argue in this paper that this overrejection problem may be related

with the fact that some stationarity tests, due to the way they are constructed, also have power

against structural change.

Concerning the e¤ects of changes in variance, Hamori and Tokihisa (1997) show that spurious

stationarity will also arise if DF tests are applied to a process that su¤ered an upward break in

variance. Early shifts will contribute to increase the size distortions and the e¤ects do not seem

to disappear asymptotically. On the other hand, Kim, Leybourne and Newbold (2000) consider

the case of a decrease in variance. Unlike what was conjectured by Hamori and Tokihisa (1997),

severe spurious rejections occur in this situation, since these authors restricted their analysis to

the simple model with no constant and no trend.

More recently, two related papers by Nelson, Piger and Zivot (2001) and Psaradakis (2001)

appeared, examining the behaviour of unit root tests when time series are subject to Markov

parameter changes. These studies show that, in general, both standard unit root tests and

single-break robust tests will do a poor job. These papers generalize the results in Franses and

Haldrup (1994), who found that the presence of large and frequent (additive) outliers leads

to severe overrejections by unit root and cointegration tests. Our study may be viewed as an

extension of these papers concerning cointegration issues.

Previous literature on structural change and cointegration has focused on developing proced-

ures to detect breaks or to estimate the temporal location of eventual shifts. Papers addressing

these issues include Hansen (1992), Quintos and Phillips (1993), Hao (1996), Andrews, Plober-
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ger and Lee (1996), Bai, Lumsdaine and Stock (1998), Seo (1998) and Kuo (1998), among others

(see also Maddala and Kim, 1998 for a general survey). However, these procedures will in general

only be valid if the variables are in fact cointegrated. This adds importance to the understanding

of the properties of cointegration tests when parameter changes take place.

While there is a vast literature on the impact of structural breaks on univariate time series,

papers speci…cally dealing with the e¤ect of parameter non-constancy on cointegration tests are

less abundant. These include the work of Gregory, Nason and Watt (1996), who, in the context

of the linear quadratic model, found that the ADF test has its power considerably decreased

in the presence of a structural break. This is not necessarily a weakness, since the alternative

of Engle-Granger cointegration implies an invariant relationship. Little is said about possible

size distortions. These conclusions are also supported by Gregory and Hansen (1996). On the

other hand, Campos, Ericsson and Hendry (1996) analyse cointegration tests when the marginal

process of one of the cointegrating regressors is stationary with a break, con…rming the decrease

in power of the ADF test. It should be noted, however, that these studies are limited in scope,

in the sense that they only address one type of structural break (…xed, single deterministic shift)

and concentrate on the properties of the ADF cointegration test. Moreover, it remains an open

question whether the results from this literature are general enough to encompass regime shifts

as speci…ed in this paper, both in terms of …nite-sample power and size.

Thus, our paper extends and uni…es existing studies focusing on structural change and coin-

tegration. Moreover, our analysis stresses parameter non-constancy that is empirically plausible

and economically meaningful in this context. To illustrate the problem, we reestimate the present

value model with Markov switching of Dri¢ll and Sola (1998) and look at the performance of

cointegration tests.

The paper proceeds as follows. The next section reviews the cointegration tests of interest.

Section 3 describes the experimental design of our simulations, while Section 4 reports and

discusses the results of the experiments. Section 5 provides an empirical illustration of the

problem using US data on stock prices and dividends and Section 6 concludes.

2 Cointegration Tests

In this section, we provide a necessarily brief description of the cointegration tests examined in

the subsequent Monte Carlo study. Given the model

yt = α + β0xt + ut, (1)
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where zt = (yt, xt) is a (k + 1) £ 1 vector of I(1) variables, xt possibly containing deterministic

elements (such as a time trend), the variables in zt will be cointegrated if ut is stationary. To

test this hypothesis in this paper, we employ ”standard” tests with the null hypothesis of no

cointegration, tests which have cointegration as their null, as well as cointegration tests allowing

for regime shifts.

2.1 Standard Cointegration Tests

The ADF and the Zα and Zttests of Phillips and Ouliaris (1990) are among the most popular

cointegration tests, having been extensively used and discussed in the literature. They may be

viewed as an application of their unit root counterparts to test whether the residuals ût from (1)

have a unit root or, by contrast, are stationary. While the ADF test corrects for serial correlation

by adding lagged ¢ût terms in the test regression ¢ût = (ρ¡ 1)ût¡1+ ηt, Phillips-Ouliaris tests

make use of a nonparametric modi…cation, which involves the estimation of σ2η, the long run

variance of the errors ηt.

To select an appropriate lag length for the ADF test, we adopt a t-test downward selection

procedure, by setting the maximum lag equal to 6 and then testing downward until a signi…cant

last lag is found, at the 5% level. Finite-sample critical values computed as in MacKinnon

(1991) will be used in our experiments. Turning to Zα and Zt tests, the long run variance σ2η is

estimated by means of a prewhitened quadratic spectral kernel with an automatically selected

bandwidth estimator, using a …rst-order autoregression as a prewhitening …lter, as recommended

in Andrews and Monahan (1992).

2.2 Gregory-Hansen Tests

Gregory and Hansen (1996), building upon Zivot and Andrews (1992), generalized the standard

cointegration tests by considering an alternative hypothesis in which the cointegration vector

may su¤er a regime shift at an unknown timing. They analyzed models that accommodate under

the alternative the possibility of changes in parameters, namely a level shift model (C ), a model

with a level shift plus trend (C/T ), a ”regime shift” model (C/S) where both the constant and
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slope parameters change, as well as a regime shift model where a trend shift is added (C/S/T),

yt = µ1 + µ2Dt + β0xt + ut, t = 1, ..., T, (C)

yt = µ1 + µ2Dt + αt + β0xt + ut, (C/T)

yt = µ1 + µ2Dt + β01xt + β02xtDt + ut, (C/S)

yt = µ1 + µ2Dt + α1t + α2tDt + β 01xt + β02xtDt + ut. (C/S/T)

The vector xt of I(1) variables is of dimension k, ut should be a stationary disturbance and Dt

is a dummy variable of the type

Dt =

8
<
:

0, if t > [Tτ ]

1, if t · [Tτ ] .
(2)

Here, τ 2 J denotes the unknown relative timing of the break point and [.] denotes the integer

part operator. The trimming region de…ned by J may be any compact set of (0, 1), but following

earlier literature, Gregory and Hansen (1996) propose J = (0.15, 0.85).

As with the previous tests, these are residual-based cointegration tests that evaluate if the

error term is I(1) under the null. In this framework, however, since the change point or its

occurrence are unknown, the testing procedures involve computing the usual statistics for all

possible break points τ 2 J and then selecting the smallest value obtained, since it will poten-

tially present greater evidence against the null hypothesis of no cointegration. Therefore, one

should observe the values of

GH-Zα = inf
τ2J

Zα, (3)

GH-Zt = inf
τ2J

Zt, (4)

GH-ADF = inf
τ2J

ADF. (5)

Nevertheless, as pointed out by the authors, these tests possess power against other alternatives,

namely ”stable” cointegration. Hence, a rejection of the null hypothesis does not necessarily

imply changes in the cointegration vector, since an invariant relationship might be the cause of

the rejection.

These test statistics have non-standard limiting distributions with no closed form and, there-

fore, critical values were obtained by resorting to simulation methods. In this paper, we examine

types of structural break that were not previously tabulated, which are the change in slope with

stable intercept,

yt = µ + β01xt + β02xtDt + ut, (S)
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as well as a model with change in slope and no constant term,

yt = β01xt + β02xtDt + ut. (Snc)

For proper comparison, and following Gregory and Hansen (1996, p. 110), we obtained critical

values for these types of shifts, with a single regressor, using the same response surface: with 10

000 replications for sample dimensions T = 50, 100, 150, 200, 250 and 300, critical values at the

p percent level are obtained and then the regression

C(p, T ) = ψ0 + ψ1T
¡1 + error,

is run. The critical values at the 5% signi…cance level for the (S) model are ¡4.685 (GH-ADF

and GH-Zt tests) and ¡39.172 (GH-Zα test). For the (Snc) model, the critical values are ¡4.192

for the GH-ADF and GH-Zt tests, and ¡30.322 for the GH-Zα test, respectively.

2.3 Tests with Cointegration as the Null Hypothesis

The tests described in the previous sections are based on the principle of testing for a unit root

in the residuals of the cointegrating regression. Other tests have been developed which test

whether the residuals are stationary and, therefore, have cointegration as the null hypothesis.

Since we are focusing on the e¤ects of neglected parameter changes, it is also interesting to relate

cointegration tests with structural change tests, as the …rst may be derived from the latter.

Hansen (1992) proposed some LM-type structural change tests in cointegrated models, mak-

ing use of the Fully-Modi…ed OLS estimator. A versatile feature of those tests is the possibility

of using them as cointegration tests. In fact, if the alternative hypothesis is that the intercept

follows a random walk, then structural change testing becomes cointegration testing, albeit with

the null hypothesis of cointegration. In model (1), if yt and xt are not cointegrated, then the

error term ut is integrated of order one. Decomposing ut such that ut = wt + vt, being wt a

random walk and vt a stationary term, the model then becomes

yt = α1t + β0xt + vt, (6)

with α1t = α1 + wt, that is, the intercept ”absorbs” the random walk wt when there is no

cointegration.

In view of this fact, Hansen (1992) suggested the use of the statistic

Lc =

PT
t=1 ŝ

0
tM̂

¡1
t ŝt

ω̂1.2T
, (7)
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to test the null of cointegration, where ŝtrepresents the scores of the FM-OLS estimates and the

weighting matrix M̂ is the moments matrix of the regressors. However, this statistic was designed

to test the stability of the whole cointegration vector, so there are advantages in regarding a

version that tests only (partial) structural change in the intercept. Hao (1996) developed this

version, labelling it L0c where the superscript 0 re‡ects the fact that the test is constructed for

testing partial structural change in the intercept. Furthermore, Hao (1996) points out that this

version is equivalent to an already known statistic, used by Kwiatkowski, Phillips, Schmidt and

Shin (1992) to test for stationarity. Shin (1994), Harris and Inder (1994) and McCabe et al.

(1997), for example, extend its use to test for the null hypothesis of cointegration (see Gabriel,

2001 for a survey). Here, we use the latter version

MLS = T¡2
PT

t=1(
Pt

j=1 ε̂j)2

σ̂2
, (8)

based on the dynamic OLS estimator of Saikkonen (1991) with …ltered residuals (ε̂j) from

an ARIMA(p, 1, 1) model, and using the variance estimator (σ̂2) suggested by Leybourne and

McCabe (1999) (see McCabe et al., 1997 and Gabriel, 2001 for more details on the computation

of the statistic).

It is important, however, to stress that a researcher should be cautious in interpreting the

results of these tests, since a rejection does not entail the immediate acceptance of the alternative

hypothesis for which they were constructed. For instance, if the MLS statistic rejects, that does

not mean that there is no cointegration, since it also has power against parameter instability.

The only plausible conclusion one can draw is that the traditional speci…cation of a cointegration

model such as (1) (assuming parameter stability) is not supported by the data. The same applies

to structural change tests used as cointegration tests.

With this in mind, Hao (1996) proposed a robust test for cointegration, with the objective of

overcoming an eventual rejection of the null hypothesis due to a discrete break in the constant

term. The transformation may be implemented with the L0c version of (??), inserting a dummy

variable in the regression that tries to capture the possible break in the intercept. Given that

the change point is unknown, the test consists of taking the smallest L0c statistic computed for

all possible break dates, that is, the test statistic is infλ2J L0c . The model is now written as

yt = α1t + α2tDt + β0xt + ut, (9)

with D t equal to 0 if t · [Tλ] and equal to 1 if t > [Tλ].
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3 Monte Carlo Analysis

In this section, we resort to Monte Carlo simulations to evaluate the …nite-sample properties

of the cointegration procedures discussed in section 2, when we allow for cointegration with

changes in parameters. First, we describe the DGP and the experimental design used in the

simulations. This is followed, in the next section, by a discussion of the numerical results.

In our experiments, we consider Markov switching cointegration as de…ned in Hall et al.

(1997), where long run parameters switch between di¤erent cointegrating regimes. The DGP is

speci…ed as

yt = α(st) + β(st)xt + σ(st)ut, (10)

xt = xt¡1 + νt, t = 1, ..., T,

where yt and xt are both scalar, with

α(st) = α0 + α1st, (11)

β(st) = β0 + β1st, (12)

σ(st) = σ0 + σ1st, (13)

where st is a binary random variable in S = f0, 1g, indicating the unobserved regime or state

of the cointegrating relationship at date t. It is postulated that fstg is a stationary …rst-order

Markov chain in S with transition matrix P = (pij), where

pij = Pr(st = jjst¡1 = i), i, j 2 S. (14)

Furthermore, it is assumed that fstg is independent of futg and fvtg. In this way, the cointegra-

tion equation will undergo discrete shifts induced by the values of the Markov chain fstg, with the

cointegration vector changing stochastically between (1, ¡α0,¡β0) and (1,¡α0¡α1,¡β0¡β1),

while ut represents the extent to which the system is out of long run equilibrium. Note that the

variance of errors is also allowed to switch between regimes. For simplicity, only a single-regressor

model, with no deterministic trends, is considered.

To see what the e¤ects of regime shifts in a cointegrating relationship may be, consider the

simpler case where only the intercept is switching,

yt = α0 + α1st + βxt + ut. (15)

If switching is neglected, then the researcher would be estimating yt = µ + βxt + et, where

et = α0 + α1st ¡ µ + ut. Hence, we see that not accounting for regime switching will introduce
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further autocorrelation in the errors, as we will show next1. In order to derive the autocorrelation

function of et, we need to restrict µ = (α1 ¡ α0)π + α0, where π represents the unconditional

probability of staying in regime 1 2, so that et is zero-mean and then autocovariances are derived

as E(etet¡k) = (α1 ¡ α0)2cov(st, st¡k). As pointed out by Nelson et al. (2001), the cov(st, st¡k)

may be expressed as π(P (st = 1jst¡k = 1) ¡ π2, which converges geometrically to 0. Therefore,

the autocovariance function of et also decays geometrically to 0, as does its autocorrelation

function ρe,k. This means that, even if ut is white noise, the switching intercept will generate

an autocorrelation pattern in the errors.

To have an idea of the precise e¤ects, let us obtain an expression of the …rst-order autocor-

relation of the new error term. The variance of et would be (α1¡α0)2(π¡π2)+σ2u, maintaining

the assumption of independence between fstg and futg. Hence,

ρe,1 =
(α1 ¡ α0)2(πp11 ¡ π2)

(α1 ¡ α0)2(π ¡ π2) + σ2u
. (16)

From this expression, we see that the autocorrelation will increase with the shift magnitude,

while if a regime is more persistent than the other, the variance of et decreases and therefore

the autocorrelation is milder. For instance, if ut » i.i.d.(0, 1), p00 = p11 = 0.98 and for a shift of

magnitude 4 (α1 = 4), ρe equals 0.768, whereas if p00 = 0.98 and p11 = 0.9, ρe is 0.607. If α1 = 1,

then in the …rst case ρe,1 is considerably smaller, 0.192. Also, notice that contrary to intuition,

the more persistent the regimes are (i.e., less shifts occurring), the more autocorrelation they

will produce. This in accordance with Diebold and Inoue (2001) and Timmermann (2000), for

example, which show that increasing the transition probabilities generates higher autocorrelation

for a given process subject to breaks.

Moreover, et has also an ARMA representation, as discussed in Nelson et al. (2001), with the

MA coe¢cient given by θ = p00+p11¡1, arising from the AR(1) representation of st. In principle,

autocorrelation-robust tests as the ones studied in this paper could tackle at least part of the

problem, although we know from previous literature that di¢culties in the tests performance

are to be expected when structural breaks occur. Note that if the variance of ut is regime-

dependent, then the denominator of ρe,1 will re‡ect that as (α1¡α0)2(π¡π2)+πσ2u1+(1¡π)σ2u0.

Further complications would arise if we allowed for a switching slope or considered more complex

autocorrelated processes for ut. These issues will be investigated in the Monte Carlo simulations.

It should be noticed that we allow for regime shifts under the hypothesis of no cointegration,

which was not considered previously. Very seldom in applied work does the researcher takes into
1Notice that our case is similar to the one studied by Nelson et al. (2001, section 2.1).
2Given by (1¡ p00)/(2¡ p00 ¡ p11).
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account this possibility. Nevertheless, this is in line with the recent research on unit roots and

structural breaks reviewed in the introduction. Also, this situation should be considered in order

to maintain some symmetry with the case of Markov switching cointegration. Although it adds

more complexity to the problem, there is no reason why we should restrict the behaviour under

the no cointegration hypothesis to a simple random walk, especially if the marginal process

contains breaks itself.

We study the performance of the tests for di¤erent types of changes. In a …rst instance, we

analyse the case of shifts occurring in the slope (β(st)) in a model with no intercept (α0 = α1 =

0). We also consider the case of changing slopes with a stable intercept, as well as changing

intercepts with constant slope coe¢cient (β0 = β1). Finally, we study the case were both

intercept and slope coe¢cients switch.

Concerning the magnitude of the breaks in the coe¢cients, we …x α0 = 1 and β0 = 1 for the

relevant cases and let α1 and β1 take on the values (1, 4) and (0.5, 1, 4), respectively. Other

values and combinations are obviously possible, but we believe these values to be empirically

plausible. In addition, we also study the situation where the variance of the errors may vary

and thus we let σ0 = 1, while σ1 2 f0.5, 1g.

As can be seen, this type of model is very ‡exible, encompassing the regime-shift models

discussed by Gregory and Hansen (1996) when p11 = 1 or p00 = 1 (i.e., with an absorbing

regime). This speci…cation also allows for a wide range of regime changes, depending on the

values of the transition probabilities. In our simulations, the values of the transition probabilities

are taken from (p00, p11) 2 f(0.98, 0.98), (0.95, 0.95), (0.95, 0.9)g. We attempt here to experiment

with di¤erent settings for the pij’s without neglecting their empirical congruence. The …rst pair

of transition probabilities (p00, p11) = (0.98, 0.98) implies highly persistent, almost absorbing

regimes, with very few shifts, each regime persisting on average 50 time periods3. The pair

(p00, p11) = (0.95, 0.95), on the other hand, is less persistent, with an average regime duration of

20 time periods. While the …rst two pairs allow for symmetry in the persistence of the states, the

(p00, p11) = (0.95, 0.9) implies that the second regime is less likely than regime 0, with a mean

duration of 10 time periods, therefore originating a more volatile cointegrating relationship.

Other values could be experimented, but the simulations have to be reduced to manageable

proportions. Furthermore, these values seem sensible, as we may expect some breaks to occur

in a long run relationship, although not very frequently. Again, it should be emphasized that

both the number and the location of regime shifts are not speci…ed in this DGP.

3The duration of regime i is given by 1/(1¡ pii).
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To have an idea of the di¤erences in performance caused by the presence of regime shifts and

variances, a ”benchmark” model with no regime switching is also evaluated. For every DGP,

the error term ut is generated as an autoregressive process ut = ρut¡1 + εt, εt » n.i.d.(0, 1),

with ρ = 0, ρ = 0.75 and ρ = 1. The aim is to evaluate the tests properties with di¤erent

error structures, since in an applied work context the disturbances are likely to be, at least,

serially correlated. Note that when ρ = 1, this will allows us to obtain an estimate of the

size of the null-of-no-cointegration (NNC) tests, while representing the empirical power of the

null-of-cointegration (NC) tests. Conversely, when ρ = 0 and ρ = 0.75, we get the empirical

power of NNC tests and size estimates for the NC tests. Additionally, the process νt in (10)

is generated as n.i.d.(0, 1), uncorrelated with ut. The selected sample dimensions are T = 100

and 200. In all experiments, the number of replications is 2500. In order to attenuate the e¤ect

of initial values of the random number generator, 50 + T observations are generated in each

replication (setting x1 = 0), but the …rst 50 observations are discarded.

Thus, and before proceeding to the next section, perhaps it is useful to summarize the

questions we are trying to answer with the simulations outlined above. These experiments

will help us to gauge the e¤ects of di¤erent shift magnitudes, as well as of switching error

variances. Moreover, the asymptotic behaviour of the tests in this context is also considered,

along with the e¤ects of a signi…cant degree of correlation. On the other hand, by varying the

transition probabilities, we are able to determine the impact of di¤erent degrees of persistence in

cointegration regimes. Finally, and in the context of our model, we try to isolate and characterize

the e¤ects of shifts in each cointegrating coe¢cient. The results of the simulations are analysed

next.

4 Numerical Results

The bulk of the results are shown in the Appendix. Thus, Tables 1 to 11 display estimates of

rejection frequencies of the di¤erent tests at the 5% level of signi…cance. In parentheses, size-

corrected powers are presented for NNC tests, the adjustments being based on the corresponding

results with ρ = 1 in each table4. Given the way the DGP is parameterized, it is not clear which

value for ρ should be used (under the null hypothesis of cointegration) to obtain size-adjusted

powers for NC tests, so we will abstain from presenting such results for this type of tests.
4 If one was to consider the hypothesis of no cointegration with no regime shifts, then the adjustments in

power should have been made with the results from Table 1. Nominal power does not, however, depend on the

speci…cation of this hypothesis.
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Table 1 summarizes results from previous literature, namely those in Gregory and Hansen

(1996, Table 2), showing the results for the model with no regime switching. The …rst part of

this Table concerns the case of no intercept in the model, with the ADF, GH-ADF and Zα tests

rejecting the null of no cointegration more often than they should, although not as severely as

the Zt test. On the other hand, the GH -Zα test tends to be biased towards the null, while the

GH -Zt and MLS tests display reasonable Type-I error estimates, at least for ρ = 0 in the latter

case. In terms of power, standard tests perform better and are less a¤ected by autocorrelation.

As for the model with constant term, the situation is similar. We present the three versions

of Gregory-Hansen tests and it seems that the version designed for model (S) performs slightly

better, in general.

Tables 2 to 11 present the results when the cointegration vector is allowed to switch between

di¤erent regimes. Instead of discussing the results for each set of experiments, perhaps it is more

interesting to highlight some general common features of the simulations output (regardless the

particular model under study), which help to answer the questions posed in the end of the

previous section. First, it is clear that, independently of other parameter values, as the size

of the break increases, both the power and size performance of all tests worsens, as expected

(compare Table 2a with Tables 3a and 4a, and so forth). The problem seems to a¤ect standard

tests to a larger extent than GH -type tests, at least in terms of the ability to …nd cointegration.

Concerning the MLS test, it is more a¤ected in terms of signi…cance level distortions than in

terms of power, which could be predicted from the results in Lee et al. (1997). It should be

said, however, that for small breaks (β1 = 0.5 and α1 = 1) all tests perform reasonably well.

On the other hand, changes in variance have ambiguous e¤ects (see sections in each Table).

A mild increase in the rejection frequencies under the null of NNC tests is also accompanied by

slightly higher nominal power, while both power and size distortions decrease for the MLS test.

If we consider size-adjusted power, we observe that it stays very much the same, with marginal

increases. Although this somehow contradicts the results in Hamori and Tokihisa (1997) and

Kim et al. (2000) for univariate series and single deterministic breaks, it is more in accordance

with Nelson et al. (2001). Note that, in our case, it is not possible to distinguish between

upward shifts or downward shifts in variance (unless only one switch in regime occurs), since the

relationship is switching between two states at unknown timings. Therefore, we may expect an

”averaging” e¤ect, in terms of types of changes in variances, to be taking place and thus having

a not very dramatic impact in the performance of the tests.

Thirdly, increasing the size of the sample does not always have a positive impact on the
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tests …nite-sample abilities, especially when there is no autocorrelation, although signi…cant

improvements occur for ρ = 0.75. Occasionally, higher powers are attained when the sample size

is 100, except for the MLS test, again con…rming the results in Lee et al. (1997). However, it

is clear that, in general, the estimated Type-I error probabilities for both types of tests diverge

from the nominal value of 5% as T grows, and the tendency is aggravated for larger shifts, quite

severely in the case of the MLS test with ρ = 0. This is not surprising, since, on one hand,

we should expect some improvements due to the longer sample length, but, on the other hand,

this is contradicted by the fact that the number of breaks will increase, even in the case of more

persistent regimes.

Moving next to the combined e¤ects of regime shifts and autocorrelation, it is interesting

to notice that the overrejection tendency of the MLS test is attenuated when ρ = 0.75, while

the power of the ADF improves slightly. This may have to do with the fact that these tests are

correcting for autocorrelation parametrically (as discussed in sections 2.1 and 2.3) and that the

correction is being more e¤ective for this structure of errors correlation5. On the other hand,

and as expected, autocorrelation in the errors a¤ects the power of the other NNC tests, and GH

tests to a greater extent than standard tests. Nevertheless, this becomes less problematic as the

sample size grows.

Concerning the persistence in cointegration regimes, given by p00 and p11, even though the

number of breaks is larger when the transition probabilities decrease from 0.98 to 0.95, the

degree of autocorrelation is smaller, as conjectured from the autocorrelation function ρe,1 in

section 3. Thus, the simulations show that standard tests do a better job at rejecting a false null

hypothesis of no cointegration. On the other hand, Gregory-Hansen tests perform better when

the pij’s (i = j) are 0.98, probably because, being robust to a single break, they are able to cope

better with the smaller number of shifts. Still, the e¤ects of more breaks become apparent in

the excessive frequency of rejections of the null of no cointegration. This is also the case when

there is asymmetry in the regimes (p00 = 0.95, p11 = 0.9), although power improves, since the

autocorrelation function of the residuals is a decreasing function of jp00¡p11j (see also Nelson et

al., 2001, describing similar implications for the univariate case). As for the KPSS-type test, the

converse situation takes place: more breaks produce a slight decrease in the estimated power,

while reducing the size distortions when the null of cointegration is true.

Regarding the tests behaviour for di¤erent model formulations, it is clear from the results

5 Indeed, additional experiments not reported here show that if a non-parametric version of the KPSS statistic

is used in this context, the e¤ect of autocorrelation increases monotonically, as usual.
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of the experiments that regime shifts in the slope coe¢cient have more negative implications

for the performance of all tests. Moreover, allowing the intercept to switch jointly with the

slope coe¢cient has only a marginal impact on the tests performance, when compared with the

situation where only the slope is shifting, as may be observed from the comparison of Tables

6-7 with Tables 10-11. In these circumstances, the use of the robust test of Hao (1996) is

somewhat preferable relatively to that of the MLS test, as the former is less oversized than the

…rst. Notwithstanding this, the size distortions for Hao’s (1996) test are still considerable and

its power is in general inferior to that of the MLS test.

Finally, a word on the tests relative performance. First, as the simulations make clear,

Phillips-Ouliaris-type tests are superior to ADF-type tests in terms of (nominal and size-ajusted)

power, although more liberal in general. Secondly, there are no considerable advantages in the

use of robust tests, especially when autocorrelation in the errors is present. Within this class

of tests, the GH-Zα version seems to be the most well-balanced in terms of power and size.

Turning to NC tests, although their power remains reasonable across DGP’s, the problem lies

in the excessive number of rejections of the null of cointegration, when the DGP is in fact

cointegrated. This evidence suggests that these tests may, in some circumstances, tend too

behave as structural change tests rather than cointegration tests, since they also have power

against this type of misspeci…cation, as discussed in section 2.3.

5 An Empirical Illustration

To illustrate what the e¤ects of unaccounted stochastic structural breaks on cointegration tests

may be, we look at a simple empirical example, using US data on stock prices and dividends6.

Several studies have focused on present value models of stock prices and dividends, albeit without

providing conclusive evidence, possibly because of regime changes. Figure 1 shows the series

and it is possible to observe the abrupt changes in the time path of the variables. To overcome

this, Dri¢ll and Sola (1998) explain the deviations from stock prices fundamentals by allowing

the dividends process, as well as the present value relationship, to switch between two regimes.

Assuming that the series are non-stationary, it is natural to ask whether they are cointegrated

or not. However, if the long run relationship su¤ered regime changes, we may expect di¢culties

in detecting cointegration, according to the results of our Monte Carlo study. Table 12 reports
6The data is taken from Shiller (1989) and updated by the this author. The stock prices are January values

for the Standard and Poor Composite Index, from 1900 to 1995, while dividends are year-averages. The series

are de‡ated by January values of the producer price index.
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the results from a set of cointegration tests that include the ADF test, the Phillips-Ouliaris tests

and Gregory-Hansen tests, as well as DOLS asymptotically e¢cient estimates7 (see Saikkonen,

1991) of the cointegrating relationship yt = βxt +ut, where yt and xt represent real stock prices

and dividends, respectively. All tests for the null hypothesis of no cointegration fail to reject,

whereas the KPSS-type test (MLS) of McCabe et al. (1997) clearly rejects the existence of a

long run (stable) relationship between stock prices and real dividends. Note in particular that

Gregory-Hansen tests also fail to indicate the presence of cointegration. Hence, a researcher,

using these tools, would …nd evidence against the existence of cointegration between the variables

in this dataset.

Now, assume, without further testing and for expositional simplicity, that the series are

cointegrated, although with parameter changes (which is in accordance with the results of Dri¢ll

and Sola, 1998). To explicitly account for the possible regime shifts in the relationship, we …t a

Markov switching system to the present value relationship and the log of real dividends process,

yt = βixt + θivt, vt » N(0, 1) (17)

log xt = µi + logxt¡1 + ωiut, ut » N(0, 1) (18)

where i = 0, 1 for state i, following Dri¢ll and Sola (1998). As we can observe in Table 13, the

results are similar to those of Dri¢ll and Sola (1998) in that the means and variances appear to

be di¤erent across regimes. In the regime 0, we have a low growth/high volatility state in the

dividends process, with cointegration vector (1, ¡β0), β0 = 19.3636, while regime 1 corresponds

to a high growth/low volatility regime with (1,¡β1), β1 = 30.0884. The probabilities of staying

at each regime are p00 = 0.9798 for regime 0 and p11 = 0.9843 for regime 1. These estimates

contrast with the results in Table 12 for the ”invariant” model, where β = 25.356, which is

approximately the average of the two regimes.

If we take these results as a good approximation of the true model, it would be interesting to

assess the performance of the cointegration tests used above in this context. Since the results in

Table 12 may be speci…c to the particular sample considered here, a simple Monte Carlo exercise

is undertaken in which the estimated model of Table 13 is taken as the DGP, 2500 replications

are generated and each of these is tested for cointegration.

By looking at the results displayed in Table 14, we con…rm that both types of tests have

serious di¢culties in distinguishing between cointegration and no cointegration. The size distor-

tions are considerable (…rst line for null of no cointegration tests and remaining lines for the MLS
7The number of leads and lags in the DOLS estimation (corresponding estimates not reported) is 1 and was

determined using the AIC criterion.
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test), less so for the ADF test, while power is very low, especially if size-corrected. Therefore,

these procedures are of little use in terms of providing sensible results in such a situation.

6 Conclusion

In this paper, we have investigated the …nite-sample properties of cointegration tests when the

cointegration vector is subject to regime shifts. It would be natural to expect the procedures

under scrutiny in this paper to have their performance worsened when multiple shifts occur, as

they were designed for testing in di¤erent environments. Still, it seems relevant to study their

behaviour, at least as a starting point for future research.

In our experiments, we have characterized which factors contribute to aggravate the tests

behaviour. Indeed, a combination of high regime persistence, large magnitude of shifts and

autocorrelation literally destroy the tests ability to detect cointegration, particularly if slope

coe¢cients are responsible for the structural breaks. On the other hand, heteroskedasticity in

the equilibrium errors as formulated in this paper have little impact on the performance of the

tests.

Recent empirical research shows that it is relevant to consider structural changes in many

univariate and multivariate non-stationary time series. Notwithstanding this, an appropriate

empirical modelling strategy accounting for structural changes is yet to be de…ned. This paper

sought to contribute further to this discussion.
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7 Appendix

Table 1 - Testing for cointegration with no regime shifts

α = 0, β = 1 (No constant model)

T = 100 T = 200

ρ = 0 0.75 1 0 0.75 1

ADF 0.99
(0.988)

0.934
(0.921)

0.06 1.00
(1.00)

0.997
(0.943)

0.052

Zα 1.00
(1.00)

0.989
(0.973)

0.072 1.00
(1.00)

1.00
(1.00)

0.066

Zt 1.00
(1.00)

0.991
(0.95)

0.102 1.00
(1.00)

1.00
(1.00)

0.087

GH-ADF (Snc) 0.978
(0.97)

0.741
(0.644)

0.066 0.999
(0.998)

0.975
(0.972)

0.06

GH-Z α (Snc) 1.00
(1.00)

0.728
(0.855)

0.026 1.00
(1.00)

1.00
(1.00)

0.042

GH-Z t (Snc) 1.00
(1.00)

0.728
(0.72)

0.051 1.00
(1.00)

1.00
(1.00)

0.05

MLS 0.044 0.148 0.856 0.046 0.074 0.948

α = 1, β = 1

ADF 0.98
(0.973)

0.864
(0.778)

0.062 1.00
(1.00)

0.989
(0.984)

0.06

Zα 1.00
(1.00)

0.949
(0.889)

0.073 1.00
(1.00)

1.00
(1.00)

0.06

Zt 1.00
(1.00)

0.928
(0.854)

0.078 1.00
(1.00)

1.00
(1.00)

0.065

GH-ADF (S) 0.981
(0.974)

0.588
(0.455)

0.078 0.996
(0.994)

0.971
(0.958)

0.068

GH-ADF (C) 0.985
(0.973)

0.675
(0.453)

0.114 0.998
(0.994)

0.972
(0.937)

0.107

GH-ADF (CS) 0.965
(0.975)

0.476
(0.276)

0.122 0.994
(0.99)

0.938
(0.887)

0.094

GH-Zα (S) 1.00
(1.00)

0.456
(0.666)

0.023 1.00
(1.00)

0.995
(0.998)

0.039

GH-Zα (C) 1.00
(1.00)

0.428
(0.602)

0.024 1.00
(1.00)

0.994
(0.994)

0.05

GH-Zα (CS) 1.00
(1.00)

0.176
(0.381)

0.016 1.00
(1.00)

0.953
(0.967)

0.038

GH-Zt (S) 1.00
(1.00)

0.584
(0.585)

0.05 1.00
(1.00)

0.993
(0.993)

0.05

GH-Zt (C) 1.00
(1.00)

0.648
(0.571)

0.067 1.00
(1.00)

0.996
(0.992)

0.072

GH-Zt (CS) 1.00
(1.00)

0.445
(0.355)

0.068 1.00
(1.00)

0.976
(0.959)

0.068

MLS 0.049 0.173 0.946 0.05 0.094 0.976
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Table 2a - Change in slope, no constant (T = 100)

β1 = 0.5, σ1 = 0 p00 = p11 = 0.98 p00 = p11 = 0.95 p00 = 0.95, p11 = 0.9

ρ = 0 0.75 1 0 0.75 1 0 0.75 1

ADF 0.73
(0.715)

0.754
(0.729)

0.06 0.781
(0.739)

0.797
(0.74)

0.069 0.868
(0.821)

0.859
(0.78)

0.079

Zα 0.928
(0.907)

0.846
(0.788)

0.083 0.958
(0.922)

0.882
(0.782)

0.099 0.979
(0.949)

0.925
(0.82)

0.113

Zt 0.934
(0.906)

0.833
(0.738)

0.105 0.963
(0.915)

0.878
(0.717)

0.125 0.982
(0.946)

0.926
(0.784)

0.138

GH-ADF 0.909
(0.897)

0.64
(0.556)

0.068 0.863
(0.838)

0.614
(0.521)

0.072 0.888
(0.851)

0.665
(0.545)

0.079

GH-Zα 0.971
(0.98)

0.678
(0.776)

0.03 0.952
(0.962)

0.636
(0.70)

0.035 0.959
(0.965)

0.68
(0.708)

0.045

GH-Z t 0.971
(0.97)

0.618
(0.60)

0.055 0.95
(0.946)

0.592
(0.575)

0.055 0.961
(0.949)

0.64
(0.57)

0.077

MLS 0.334 0.231 0.836 0.304 0.21 0.814 0.214 0.178 0.81

β1 = 0.5, σ1 = 0.5

ADF 0.754
(0.73)

0.793
(0.751)

0.067 0.813
(0.767)

0.836
(0.757)

0.085 0.891
(0.846)

0.891
(0.80)

0.098

Zα 0.963
(0.944)

0.887
(0.805)

0.089 0.984
(0.955)

0.914
(0.788)

0.114 0.994
(0.98)

0.952
(0.839)

0.128

Zt 0.968
(0.946)

0.879
(0.769)

0.11 0.986
(0.956)

0.909
(0.738)

0.135 0.995
(0.977)

0.951
(0.796)

0.168

GH-ADF 0.916
(0.903)

0.664
(0.55)

0.073 0.88
(0.855)

0.644
(0.506)

0.082 0.912
(0.886)

0.691
(0.537)

0.087

GH-Zα 0.985
(0.988)

0.686
(0.757)

0.036 0.978
(0.981)

0.661
(0.699)

0.042 0.989
(0.989)

0.698
(0.70)

0.05

GH-Zt 0.986
(0.985)

0.648
(0.634)

0.065 0.975
(0.971)

0.627
(0.582)

0.074 0.987
(0.981)

0.67
(0.578)

0.085

MLS 0.311 0.222 0.819 0.279 0.203 0.799 0.184 0.161 0.784

β1 = 0.5, θ1 = 1

ADF 0.779
(0.748)

0.814
(0.755)

0.072 0.826
(0.76)

0.85
(0.748)

0.103 0.899
(0.847)

0.90
(0.778)

0.112

Zα 0.98
(0.966)

0.916
(0.819)

0.108 0.993
(0.968)

0.937
(0.758)

0.148 0.998
(0.986)

0.966
(0.794)

0.174

Zt 0.983
(0.966)

0.914
(0.769)

0.127 0.995
(0.972)

0.935
(0.719)

0.171 0.999
(0.986)

0.968
(0.76)

0.215

GH-ADF 0.917
(0.902)

0.685
(0.528)

0.086 0.886
(0.847)

0.667
(0.476)

0.102 0.92
(0.884)

0.719
(0.481)

0.109

GH-Zα 0.99
(0.99)

0.706
(0.706)

0.05 0.987
(0.986)

0.692
(0.65)

0.06 0.994
(0.983)

0.72
(0.636)

0.071

GH-Zt 0.99
(0.988)

0.671
(0.58)

0.082 0.988
(0.98)

0.663
(0.526)

0.09 0.994
(0.979)

0.701
(0.529)

0.106

MLS 0.287 0.211 0.797 0.248 0.192 0.753 0.158 0.152 0.753
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Table 2b - Change in slope, no constant (T = 200)

β1 = 0.5, σ1 = 0 p00 = p11 = 0.98 p00 = p11 = 0.95 p00 = 0.95, p11 = 0.9

ρ = 0 0.75 1 0 0.75 1 0 0.75 1

ADF 0.676
(0.661)

0.846
(0.837)

0.057 0.902
(0.839)

0.95
(0.907)

0.084 0.962
(0.908)

0.979
(0.936)

0.106

Zα 0.93
(0.886)

0.921
(0.864)

0.097 0.991
(0.96)

0.992
(0.942)

0.132 0.999
(0.986)

0.999
(0.974)

0.17

Zt 0.928
(0.884)

0.91
(0.846)

0.112 0.99
(0.957)

0.989
(0.924)

0.155 0.999
(0.986)

0.998
(0.965)

0.195

GH-ADF 0.778
(0.766)

0.834
(0.815)

0.058 0.853
(0.779)

0.872
(0.784)

0.095 0.924
(0.856)

0.922
(0.829)

0.118

GH-Zα 0.953
(0.954)

0.896
(0.89)

0.054 0.982
(0.962)

0.948
(0.90)

0.082 0.996
(0.979)

0.979
(0.921)

0.118

GH-Z t 0.939
(0.925)

0.845
(0.837)

0.059 0.97
(0.952)

0.901
(0.846)

0.076 0.989
(0.974)

0.96
(0.878)

0.122

MLS 0.65 0.27 0.927 0.425 0.165 0.89 0.264 0.109 0.89

β1 = 0.5, θ1 = 0.5

ADF 0.713
(0.688)

0.888
(0.875)

0.062 0.906
(0.824)

0.963
(0.909)

0.105 0.969
(0.909)

0.982
(0.949)

0.12

Zα 0.964
(0.929)

0.956
(0.903)

0.107 0.996
(0.966)

0.994
(0.936)

0.186 1.00
(0.992)

1.00
(0.975)

0.232

Zt 0.965
(0.926)

0.948
(0.879)

0.132 0.995
(0.968)

0.994
(0.925)

0.218 1.00
(0.992)

0.999
(0.968)

0.255

GH-ADF 0.804
(0.779)

0.871
(0.837)

0.067 0.864
(0.78)

0.908
(0.81)

0.103 0.937
(0.87)

0.949
(0.852)

0.125

GH-Zα 0.982
(0.978)

0.933
(0.92)

0.06 0.993
(0.979)

0.969
(0.911)

0.096 1.00
(0.991)

0.99
(0.942)

0.116

GH-Zt 0.976
(0.972)

0.886
(0.876)

0.066 0.989
(0.974)

0.94
(0.868)

0.106 0.998
(0.986)

0.976
(0.901)

0.124

MLS 0.609 0.237 0.921 0.399 0.14 0.876 0.245 0.099 0.87

β1 = 0.5, θ1 = 1

ADF 0.738
(0.678)

0.912
(0.876)

0.072 0.914
(0.814)

0.971
(0.899)

0.144 0.973
(0.909)

0.988
(0.933)

0.164

Zα 0.981
(0.95)

0.975
(0.918)

0.146 0.989
(0.972)

0.997
(0.923)

0.301 1.00
(0.992)

1.00
(0.962)

0.36

Zt 0.982
(0.956)

0.971
(0.904)

0.169 0.998
(0.977)

0.996
(0.911)

0.333 1.00
(0.993)

1.00
(0.953)

0.384

GH-ADF 0.828
(0.787)

0.893
(0.845)

0.084 0.88
(0.77)

0.928
(0.804)

0.137 0.944
(0.868)

0.956
(0.858)

0.152

GH-Zα 0.989
(0.986)

0.957
(0.924)

0.085 0.997
(0.989)

0.981
(0.911)

0.127 1.00
(0.996)

0.994
(0.94)

0.153

GH-Zt 0.986
(0.984)

0.923
(0.898)

0.084 0.995
(0.985)

0.96
(0.873)

0.134 1.00
(0.994)

0.988
(0.904)

0.164

MLS 0.572 0.216 0.898 0.375 0.128 0.835 0.223 0.094 0.833
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Table 3a - Change in slope, no constant (T = 100)

β1 = 1, σ1 = 0 p00 = p11 = 0.98 p00 = p11 = 0.95 p00 = 0.95, p11 = 0.9

ρ = 0 0.75 1 0 0.75 1 0 0.75 1

ADF 0.62
(0.597)

0.575
(0.546)

0.06 0.678
(0.58)

0.641
(0.521)

0.088 0.795
(0.685)

0.753
(0.602)

0.108

Zα 0.766
(0.708)

0.712
(0.709)

0.108 0.817
(0.656)

0.77
(0.533)

0.146 0.914
(0.725)

0.876
(0.575)

0.187

Zt 0.771
(0.695)

0.682
(0.546)

0.115 0.819
(0.652)

0.75
(0.481)

0.162 0.915
(0.72)

0.868
(0.534)

0.213

GH-ADF 0.858
(0.832)

0.61
(0.532)

0.071 0.762
(0.712)

0.571
(0.461)

0.09 0.812
(0.716)

0.64
(0.456)

0.101

GH-Zα 0.912
(0.916)

0.681
(0.70)

0.046 0.829
(0.817)

0.606
(0.57)

0.062 0.865
(0.818)

0.67
(0.555)

0.083

GH-Z t 0.896
(0.893)

0.585
(0.566)

0.064 0.81
(0.782)

0.545
(0.46)

0.08 0.853
(0.787)

0.617
(0.457)

0.106

MLS 0.396 0.329 0.808 0.352 0.277 0.755 0.244 0.218 0.736

β1 = 1, θ1 = 0.5

ADF 0.648
(0.613)

0.629
(0.583)

0.064 0.698
(0.615)

0.692
(0.557)

0.094 0.833
(0.716)

0.796
(0.626)

0.116

Zα 0.825
(0.773)

0.749
(0.65)

0.107 0.871
(0.735)

0.807
(0.57)

0.154 0.944
(0.815)

0.896
(0.644)

0.178

Zt 0.827
(0.771)

0.724
(0.604)

0.119 0.877
(0.728)

0.797
(0.521)

0.171 0.946
(0.819)

0.893
(0.608)

0.209

GH-ADF 0.869
(0.845)

0.627
(0.52)

0.076 0.796
(0.749)

0.594
(0.476)

0.091 0.848
(0.782)

0.65
(0.481)

0.097

GH-Zα 0.935
(0.934)

0.682
(0.679)

0.05 0.879
(0.862)

0.616
(0.586)

0.055 0.915
(0.882)

0.675
(0.57)

0.071

GH-Zt 0.921
(0.916)

0.597
(0.55)

0.071 0.86
(0.841)

0.566
(0.509)

0.079 0.904
(0.807)

0.628
(0.503)

0.10

MLS 0.395 0.293 0.80 0.34 0.241 0.76 0.236 0.185 0.758

β1 = 1, σ1 = 1

ADF 0.664
(0.63)

0.667
(0.607)

0.07 0.722
(0.61)

0.734
(0.568)

0.106 0.844
(0.742)

0.83
(0.658)

0.122

Zα 0.872
(0.812)

0.789
(0.659)

0.115 0.917
(0.786)

0.845
(0.578)

0.169 0.966
(0.861)

0.922
(0.655)

0.206

Zt 0.876
(0.815)

0.771
(0.614)

0.131 0.922
(0.792)

0.835
(0.545)

0.195 0.968
(0.863)

0.922
(0.622)

0.237

GH-ADF 0.881
(0.846)

0.639
(0.50)

0.084 0.818
(0.758)

0.62
(0.465)

0.102 0.862
(0.793)

0.669
(0.441)

0.11

GH-Zα 0.952
(0.95)

0.697
(0.662)

0.058 0.911
(0.893)

0.639
(0.566)

0.067 0.943
(0.918)

0.697
(0.553)

0.077

GH-Zt 0.943
(0.934)

0.621
(0.525)

0.084 0.898
(0.865)

0.593
(0.468)

0.096 0.938
(0.899)

0.652
(0.449)

0.118

MLS 0.373 0.277 0.794 0.338 0.232 0.744 0.224 0.184 0.732
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Table 3b - Change in slope, no constant (T = 200)

β1 = 1, σ1 = 0 p00 = p11 = 0.98 p00 = p11 = 0.95 p00 = 0.95, p11 = 0.9

ρ = 0 0.75 1 0 0.75 1 0 0.75 1

ADF 0.57
(0.506)

0.67
(0.608)

0.067 0.849
(0.628)

0.875
(0.648)

0.151 0.945
(0.734)

0.952
(0.73)

0.202

Zα 0.758
(0.623)

0.772
(0.61)

0.137 0.956
(0.688)

0.957
(0.65)

0.277 0.991
(0.784)

0.994
(0.711)

0.367

Zt 0.746
(0.615)

0.742
(0.574)

0.155 0.949
(0.692)

0.948
(0.625)

0.298 0.993
(0.79)

0.992
(0.696)

0.37

GH-ADF 0.681
(0.67)

0.668
(0.654)

0.054 0.779
(0.627)

0.756
(0.56)

0.126 0.89
(0.668)

0.871
(0.573)

0.189

GH-Zα 0.851
(0.812)

0.796
(0.728)

0.077 0.919
(0.77)

0.88
(0.635)

0.154 0.975
(0.792)

0.958
(0.633)

0.226

GH-Z t 0.808
(0.80)

0.693
(0.676)

0.075 0.873
(0.761)

0.794
(0.598)

0.145 0.953
(0.981)

0.92
(0.599)

0.216

MLS 0.646 0.428 0.904 0.39 0.265 0.827 0.228 0.168 0.803

β1 = 1, θ1 = 0.5

ADF 0.60
(0.536)

0.733
(0.681)

0.069 0.865
(0.666)

0.904
(0.718)

0.148 0.949
(0.819)

0.966
(0.83)

0.188

Zα 0.818
(0.698)

0.83
(0.668)

0.143 0.971
(0.754)

0.974
(0.701)

0.286 0.996
(0.888)

0.996
(0.832)

0.364

Zt 0.814
(0.694)

0.803
(0.634)

0.16 0.968
(0.77)

0.968
(0.686)

0.307 0.996
(0.89)

0.996
(0.814)

0.374

GH-ADF 0.723
(0.684)

0.719
(0.683)

0.067 0.801
(0.653)

0.80
(0.599)

0.132 0.908
(0.74)

0.895
(0.668)

0.165

GH-Zα 0.882
(0.852)

0.825
(0.771)

0.081 0.949
(0.845)

0.902
(0.71)

0.152 0.986
(0.888)

0.968
(0.746)

0.192

GH-Zt 0.857
(0.834)

0.747
(0.706)

0.076 0.906
(0.828)

0.837
(0.656)

0.143 0.976
(0.882)

0.938
(0.71)

0.189

MLS 0.686 0.362 0.906 0.428 0.21 0.834 0.256 0.123 0.823

β1 = 1, σ1 = 1

ADF 0.613
(0.536)

0.781
(0.708)

0.083 0.879
(0.655)

0.922
(0.726)

0.165 0.956
(0.815)

0.973
(0.84)

0.201

Zα 0.871
(0.743)

0.872
(0.702)

0.167 0.98
(0.784)

0.984
(0.705)

0.35 0.998
(0.913)

0.998
(0.85)

0.429

Zt 0.869
(0.745)

0.858
(0.672)

0.185 0.98
(0.799)

0.978
(0.688)

0.378 0.998
(0.915)

0.998
(0.836)

0.441

GH-ADF 0.743
(0.677)

0.761
(0.687)

0.086 0.814
(0.648)

0.838
(0.628)

0.152 0.919
(0.775)

0.921
(0.726)

0.179

GH-Zα 0.916
(0.88)

0.852
(0.782)

0.097 0.964
(0.879)

0.925
(0.744)

0.16 0.992
(0.924)

0.976
(0.778)

0.201

GH-Zt 0.896
(0.868)

0.787
(0.733)

0.086 0.941
(0.872)

0.87
(0.705)

0.164 0.985
(0.918)

0.954
(0.739)

0.20

MLS 0.67 0.332 0.894 0.427 0.192 0.812 0.259 0.118 0.803
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Table 4a - Change in slope, no constant (T = 100)

β1 = 4, σ1 = 0 p00 = p11 = 0.98 p00 = p11 = 0.95 p00 = 0.95, p11 = 0.9

ρ = 0 0.75 1 0 0.75 1 0 0.75 1

ADF 0.422
(0.365)

0.369
(0.308)

0.086 0.504
(0.237)

0.473
(0.201)

0.178 0.679
(0.26)

0.65
(0.215)

0.289

Zα 0.562
(0.319)

0.561
(0.243)

0.252 0.659
(0.168)

0.658
(0.156)

0.422 0.826
(0.194)

0.824
(0.172)

0.568

Zt 0.52
(0.304)

0.508
(0.244)

0.218 0.636
(0.17)

0.632
(0.148)

0.386 0.813
(0.202)

0.809
(0.174)

0.56

GH-ADF 0.69
(0.577)

0.592
(0.346)

0.141 0.575
(0.311)

0.538
(0.265)

0.182 0.651
(0.297)

0.623
(0.239)

0.25

GH-Zα 0.778
(0.577)

0.71
(0.332)

0.202 0.624
(0.293)

0.589
(0.232)

0.23 0.702
(0.305)

0.674
(0.24)

0.276

GH-Z t 0.687
(0.486)

0.572
(0.278)

0.172 0.562
(0.288)

0.518
(0.229)

0.213 0.643
(0.28)

0.61
(0.21)

0.28

MLS 0.382 0.385 0.715 0.317 0.322 0.578 0.23 0.235 0.535

β1 = 4, σ1 = 0.5

ADF 0.45
(0.385)

0.395
(0.323)

0.082 0.532
(0.295)

0.488
(0.237)

0.157 0.704
(0.334)

0.665
(0.269)

0.251

Zα 0.572
(0.356)

0.572
(0.28)

0.223 0.668
(0.203)

0.67
(0.18)

0.367 0.832
(0.254)

0.83
(0.216)

0.488

Zt 0.531
(0.351)

0.517
(0.284)

0.208 0.644
(0.214)

0.64
(0.176)

0.346 0.82
(0.256)

0.813
(0.203)

0.488

GH-ADF 0.712
(0.588)

0.594
(0.385)

0.124 0.589
(0.363)

0.543
(0.288)

0.168 0.674
(0.362)

0.623
(0.278)

0.219

GH-Zα 0.789
(0.636)

0.706
(0.394)

0.166 0.646
(0.362)

0.588
(0.277)

0.184 0.724
(0.368)

0.674
(0.267)

0.226

GH-Zt 0.708
(0.563)

0.572
(0.325)

0.15 0.586
(0.336)

0.519
(0.245)

0.186 0.671
(0.346)

0.611
(0.247)

0.235

MLS 0.389 0.382 0.738 0.322 0.312 0.595 0.226 0.228 0.583

β1 = 4, σ1 = 1

ADF 0.478
(0.408)

0.411
(0.331)

0.085 0.554
(0.316)

0.506
(0.247)

0.155 0.723
(0.384)

0.677
(0.302)

0.225

Zα 0.592
(0.392)

0.587
(0.312)

0.201 0.682
(0.237)

0.683
(0.199)

0.339 0.845
(0.325)

0.836
(0.256)

0.445

Zt 0.558
(0.379)

0.532
(0.292)

0.198 0.658
(0.243)

0.649
(0.185)

0.328 0.834
(0.326)

0.822
(0.238)

0.453

GH-ADF 0.734
(0.617)

0.592
(0.384)

0.119 0.614
(0.39)

0.545
(0.293)

0.153 0.698
(0.412)

0.623
(0.288)

0.192

GH-Zα 0.804
(0.68)

0.70
(0.434)

0.148 0.67
(0.414)

0.592
(0.297)

0.169 0.741
(0.454)

0.67
(0.308)

0.20

GH-Zt 0.74
(0.605)

0.57
(0.331)

0.144 0.612
(0.404)

0.519
(0.278)

0.175 0.693
(0.414)

0.612
(0.27)

0.21

MLS 0.402 0.377 0.743 0.338 0.31 0.624 0.232 0.219 0.615
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Table 4b - Change in slope, no constant (T = 200)

β1 = 4, σ1 = 0 p00 = p11 = 0.98 p00 = p11 = 0.95 p00 = 0.95, p11 = 0.9

ρ = 0 0.75 1 0 0.75 1 0 0.75 1

ADF 0.443
(0.251)

0.424
(0.231)

0.15 0.793
(0.219)

0.781
(0.195)

0.422 0.922
(0.24)

0.921
(0.216)

0.561

Zα 0.586
(0.184)

0.599
(0.188)

0.374 0.91
(0.153)

0.909
(0.152)

0.733 0.982
(0.187)

0.983
(0.183)

0.874

Zt 0.528
(0.178)

0.544
(0.174)

0.353 0.89
(0.156)

0.892
(0.145)

0.728 0.978
(0.184)

0.979
(0.176)

0.866

GH-ADF 0.525
(0.351)

0.485
(0.313)

0.132 0.648
(0.245)

0.629
(0.228)

0.285 0.817
(0.228)

0.806
(0.203)

0.426

GH-Zα 0.682
(0.31)

0.67
(0.267)

0.254 0.818
(0.243)

0.811
(0.222)

0.439 0.932
(0.247)

0.931
(0.221)

0.576

GH-Z t 0.569
(0.298)

0.54
(0.253)

0.202 0.714
(0.248)

0.696
(0.22)

0.381 0.886
(0.239)

0.877
(0.213)

0.538

MLS 0.58 0.565 0.783 0.304 0.299 0.61 0.164 0.158 0.55

β1 = 4, σ1 = 0.5

ADF 0.46
(0.294)

0.442
(0.262)

0.069 0.803
(0.283)

0.789
(0.248)

0.373 0.925
(0.304)

0.924
(0.267)

0.487

Zα 0.592
(0.221)

0.614
(0.223)

0.143 0.911
(0.192)

0.913
(0.188)

0.676 0.983
(0.267)

0.984
(0.246)

0.796

Zt 0.539
(0.222)

0.558
(0.218)

0.16 0.893
(0.198)

0.897
(0.186)

0.668 0.978
(0.266)

0.98
(0.24)

0.798

GH-ADF 0.55
(0.408)

0.501
(0.364)

0.067 0.672
(0.295)

0.636
(0.268)

0.263 0.827
(0.318)

0.808
(0.285)

0.378

GH-Zα 0.697
(0.376)

0.679
(0.314)

0.081 0.826
(0.30)

0.816
(0.267)

0.389 0.936
(0.331)

0.935
(0.284)

0.507

GH-Zt 0.592
(0.364)

0.553
(0.299)

0.076 0.728
(0.293)

0.702
(0.252)

0.339 0.894
(0.335)

0.882
(0.286)

0.476

MLS 0.594 0.534 0.906 0.318 0.299 0.651 0.169 0.158 0.60

β1 = 4, σ1 = 1

ADF 0.408
(0.309)

0.463
(0.288)

0.131 0.808
(0.301)

0.801
(0.267)

0.348 0.928
(0.36)

0.928
(0.32)

0.436

Zα 0.606
(0.247)

0.632
(0.252)

0.315 0.913
(0.231)

0.919
(0.222)

0.643 0.983
(0.319)

0.984
(0.29)

0.758

Zt 0.557
(0.242)

0.578
(0.234)

0.30 0.900
(0.227)

0.90
(0.206)

0.65 0.982
(0.322)

0.981
(0.282)

0.76

GH-ADF 0.571
(0.442)

0.518
(0.382)

0.106 0.688
(0.328)

0.648
(0.287)

0.238 0.839
(0.373)

0.815
(0.32)

0.349

GH-Zα 0.714
(0.429)

0.69
(0.358)

0.201 0.84
(0.352)

0.821
(0.296)

0.362 0.944
(0.404)

0.938
(0.331)

0.464

GH-Zt 0.618
(0.42)

0.566
(0.338)

0.164 0.743
(0.347)

0.712
(0.284)

0.316 0.903
(0.391)

0.887
(0.315)

0.433

MLS 0.61 0.52 0.822 0.325 0.292 0.664 0.179 0.15 0.64
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Table 5a - Change in slope, with constant (α0 = 1, T = 100)

β1 = 0.5, σ1 = 0 p00 = p11 = 0.98 p00 = p11 = 0.95 p00 = 0.95, p11 = 0.9

ρ = 0 0.75 1 0 0.75 1 0 0.75 1

ADF 0.607
(0.647)

0.598
(0.555)

0.065 0.694
(0.629)

0.611
(0.491)

0.087 0.792
(0.719)

0.699
(0.538)

0.105

Zα 0.904
(0.865)

0.758
(0.607)

0.101 0.922
(0.84)

0.781
(0.514)

0.124 0.958
(0.874)

0.849
(0.565)

0.146

Zt 0.90
(0.877)

0.695
(0.603)

0.081 0.914
(0.861)

0.713
(0.512)

0.098 0.954
(0.894)

0.806
(0.568)

0.116

GH-ADF 0.90
(0.884)

0.502
(0.39)

0.079 0.822
(0.77)

0.477
(0.308)

0.099 0.845
(0.787)

0.533
(0.348)

0.107

GH-Zα 0.956
(0.961)

0.424
(0.496)

0.033 0.903
(0.91)

0.374
(0.42)

0.042 0.91
(0.911)

0.411
(0.418)

0.048

GH-Z t 0.962
(0.959)

0.468
(0.433)

0.061 0.922
(0.902)

0.444
(0.36)

0.066 0.929
(0.908)

0.48
(0.379)

0.076

MLS 0.423 0.338 0.747 0.437 0.344 0.713 0.326 0.286 0.694

β1 = 0.5, σ1 = 0.5

ADF 0.712
(0.688)

0.653
(0.591)

0.068 0.732
(0.656)

0.666
(0.486)

0.105 0.826
(0.737)

0.75
(0.503)

0.142

Zα 0.945
(0.918)

0.80
(0.641)

0.11 0.964
(0.885)

0.821
(0.472)

0.169 0.985
(0.92)

0.876
(0.507)

0.216

Zt 0.948
(0.924)

0.74
(0.62)

0.086 0.962
(0.902)

0.768
(0.47)

0.128 0.982
(0.934)

0.846
(0.498)

0.184

GH-ADF 0.911
(0.889)

0.524
(0.342)

0.096 0.857
(0.812)

0.513
(0.303)

0.114 0.886
(0.82)

0.545
(0.291)

0.145

GH-Zα 0.972
(0.976)

0.431
(0.474)

0.044 0.944
(0.938)

0.393
(0.357)

0.061 0.956
(0.944)

0.424
(0.344)

0.068

GH-Zt 0.979
(0.976)

0.495
(0.412)

0.069 0.958
(0.938)

0.472
(0.326)

0.087 0.967
(0.946)

0.50
(0.313)

0.109

MLS 0.386 0.324 0.746 0.389 0.315 0.698 0.287 0.228 0.645

β1 = 0.5, σ1 = 1

ADF 0.74
(0.718)

0.688
(0.636)

0.07 0.762
(0.67)

0.714
(0.484)

0.123 0.849
(0.751)

0.777
(0.453)

0.18

Zα 0.97
(0.943)

0.836
(0.622)

0.128 0.984
(0.932)

0.858
(0.474)

0.20 0.992
(0.953)

0.904
(0.448)

0.286

Zt 0.971
(0.958)

0.788
(0.623)

0.092 0.984
(0.943)

0.814
(0.479)

0.153 0.991
(0.962)

0.875
(0.448)

0.238

GH-ADF 0.917
(0.888)

0.555
(0.313)

0.112 0.864
(0.808)

0.552
(0.271)

0.142 0.899
(0.834)

0.565
(0.235)

0.177

GH-Zα 0.985
(0.983)

0.457
(0.355)

0.068 0.97
(0.956)

0.433
(0.327)

0.081 0.981
(0.966)

0.453
(0.281)

0.097

GH-Zt 0.986
(0.984)

0.52
(0.356)

0.089 0.978
(0.964)

0.512
(0.325)

0.112 0.989
(0.97)

0.528
(0.276)

0.137

MLS 0.346 0.319 0.742 0.364 0.293 0.654 0.252 0.257 0.613
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Table 5b - Change in slope, with constant (α0 = 1, T = 200)

β1 = 0.5, σ1 = 0 p00 = p11 = 0.98 p00 = p11 = 0.95 p00 = 0.95, p11 = 0.9

ρ = 0 0.75 1 0 0.75 1 0 0.75 1

ADF 0.564
(0.53)

0.746
(0.712)

0.067 0.778
(0.657)

0.862
(0.742)

0.116 0.903
(0.76)

0.923
(0.785)

0.167

Zα 0.875
(0.829)

0.85
(0.773)

0.09 0.969
(0.888)

0.961
(0.826)

0.17 0.994
(0.935)

0.992
(0.862)

0.245

Zt 0.87
(0.839)

0.812
(0.755)

0.076 0.965
(0.901)

0.937
(0.813)

0.136 0.992
(0.94)

0.984
(0.858)

0.215

GH-ADF 0.734
(0.706)

0.758
(0.70)

0.071 0.78
(0.674)

0.784
(0.609)

0.116 0.874
(0.733)

0.861
(0.612)

0.177

GH-Zα 0.922
(0.909)

0.812
(0.765)

0.066 0.941
(0.90)

0.839
(0.716)

0.104 0.976
(0.916)

0.917
(0.689)

0.169

GH-Z t 0.919
(0.905)

0.77
(0.72)

0.064 0.934
(0.902)

0.802
(0.694)

0.10 0.976
(0.922)

0.894
(0.671)

0.16

MLS 0.75 0.39 0.86 0.585 0.298 0.81 0.404 0.214 0.784

β1 = 0.5, σ1 = 0.5

ADF 0.62
(0.571)

0.81
(0.766)

0.077 0.812
(0.608)

0.897
(0.709)

0.192 0.916
(0.713)

0.946
(0.73)

0.27

Zα 0.931
(0.878)

0.909
(0.804)

0.12 0.987
(0.881)

0.979
(0.732)

0.278 0.999
(0.942)

0.996
(0.794)

0.372

Zt 0.925
(0.884)

0.883
(0.781)

0.102 0.984
(0.898)

0.966
(0.729)

0.247 0.998
(0.948)

0.993
(0.78)

0.334

GH-ADF 0.772
(0.728)

0.804
(0.719)

0.086 0.794
(0.67)

0.835
(0.594)

0.17 0.892
(0.745)

0.896
(0.598)

0.239

GH-Zα 0.958
(0.946)

0.854
(0.795)

0.083 0.971
(0.93)

0.879
(0.685)

0.167 0.992
(0.948)

0.943
(0.638)

0.24

GH-Zt 0.957
(0.944)

0.825
(0.754)

0.082 0.968
(0.931)

0.85
(0.669)

0.156 0.99
(0.953)

0.926
(0.642)

0.235

MLS 0.722 0.354 0.843 0.574 0.266 0.745 0.387 0.194 0.698

β1 = 0.5, σ1 = 1

ADF 0.651
(0.578)

0.846
(0.782)

0.089 0.834
(0.606)

0.913
(0.712)

0.266 0.929
(0.697)

0.958
(0.703)

0.377

Zα 0.964
(0.913)

0.944
(0.82)

0.157 0.996
(0.905)

0.989
(0.717)

0.388 0.999
(0.954)

0.998
(0.739)

0.512

Zt 0.964
(0.928)

0.922
(0.827)

0.124 0.995
(0.929)

0.982
(0.727)

0.352 0.999
(0.963)

0.998
(0.722)

0.475

GH-ADF 0.795
(0.746)

0.835
(0.722)

0.102 0.819
(0.683)

0.863
(0.597)

0.206 0.905
(0.749)

0.916
(0.552)

0.315

GH-Zα 0.979
(0.962)

0.889
(0.766)

0.11 0.988
(0.948)

0.917
(0.666)

0.215 0.998
(0.971)

0.964
(0.609)

0.333

GH-Zt 0.981
(0.966)

0.863
(0.751)

0.101 0.988
(0.955)

0.892
(0.653)

0.20 0.998
(0.976)

0.95
(0.612)

0.319

MLS 0.686 0.332 0.819 0.541 0.251 0.687 0.356 0.188 0.629
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Table 6a - Change in slope, with constant (α0 = 1, T = 100)

β1 = 1, σ1 = 0 p00 = p11 = 0.98 p00 = p11 = 0.95 p00 = 0.95, p11 = 0.9

ρ = 0 0.75 1 0 0.75 1 0 0.75 1

ADF 0.533
(0.519)

0.435
(0.402)

0.06 0.543
(0.441)

0.442
(0.496)

0.105 0.681
(0.491)

0.582
(0.311)

0.152

Zα 0.722
(0.627)

0.624
(0.419)

0.13 0.729
(0.504)

0.643
(0.287)

0.198 0.847
(0.56)

0.777
(0.296)

0.269

Zt 0.702
(0.654)

0.533
(0.413)

0.087 0.702
(0.534)

0.557
(0.284)

0.145 0.824
(0.585)

0.716
(0.30)

0.209

GH-ADF 0.838
(0.778)

0.497
(0.317)

0.103 0.707
(0.576)

0.46
(0.218)

0.142 0.743
(0.568)

0.516
(0.224)

0.177

GH-Zα 0.868
(0.848)

0.477
(0.369)

0.079 0.736
(0.682)

0.379
(0.276)

0.09 0.76
(0.668)

0.432
(0.251)

0.11

GH-Z t 0.868
(0.844)

0.463
(0.333)

0.086 0.758
(0.67)

0.409
(0.248)

0.104 0.784
(0.662)

0.468
(0.228)

0.139

MLS 0.496 0.415 0.737 0.502 0.413 0.663 0.375 0.332 0.631

β1 = 1, σ1 = 0.5

ADF 0.572
(0.543)

0.486
(0.432)

0.069 0.593
(0.472)

0.503
(0.317)

0.114 0.733
(0.566)

0.632
(0.344)

0.167

Zα 0.786
(0.704)

0.666
(0.462)

0.126 0.801
(0.595)

0.687
(0.318)

0.203 0.895
(0.657)

0.808
(0.303)

0.265

Zt 0.772
(0.726)

0.588
(0.464)

0.09 0.781
(0.632)

0.611
(0.321)

0.152 0.885
(0.694)

0.757
(0.315)

0.223

GH-ADF 0.857
(0.81)

0.515
(0.316)

0.111 0.752
(0.635)

0.468
(0.216)

0.13 0.793
(0.646)

0.53
(0.207)

0.166

GH-Zα 0.901
(0.882)

0.462
(0.352)

0.071 0.798
(0.752)

0.388
(0.268)

0.079 0.828
(0.757)

0.421
(0.235)

0.099

GH-Zt 0.906
(0.886)

0.472
(0.332)

0.089 0.816
(0.753)

0.426
(0.246)

0.104 0.849
(0.758)

0.477
(0.218)

0.138

MLS 0.486 0.398 0.735 0.494 0.398 0.667 0.361 0.318 0.63

β1 = 1, σ1 = 1

ADF 0.602
(0.574)

0.532
(0.476)

0.071 0.631
(0.496)

0.558
(0.338)

0.127 0.767
(0.598)

0.675
(0.351)

0.19

Zα 0.835
(0.769)

0.700
(0.508)

0.136 0.857
(0.682)

0.732
(0.364)

0.223 0.932
(0.766)

0.837
(0.382)

0.308

Zt 0.828
(0.782)

0.634
(0.482)

0.10 0.849
(0.708)

0.662
(0.34)

0.168 0.925
(0.785)

0.79
(0.364)

0.255

GH-ADF 0.862
(0.818)

0.524
(0.311)

0.124 0.774
(0.69)

0.493
(0.253)

0.152 0.821
(0.716)

0.532
(0.236)

0.188

GH-Zα 0.922
(0.911)

0.468
(0.384)

0.086 0.842
(0.818)

0.405
(0.302)

0.094 0.88
(0.839)

0.43
(0.271)

0.113

GH-Zt 0.93
(0.91)

0.486
(0.344)

0.104 0.856
(0.814)

0.456
(0.278)

0.118 0.90
(0.839)

0.495
(0.257)

0.154

MLS 0.468 0.335 0.734 0.48 0.324 0.65 0.34 0.242 0.604
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Table 6b - Change in slope, with constant (α0 = 1, T = 200)

β1 = 1, σ1 = 0 p00 = p11 = 0.98 p00 = p11 = 0.95 p00 = 0.95, p11 = 0.9

ρ = 0 0.75 1 0 0.75 1 0 0.75 1

ADF 0.441
(0.377)

0.521
(0.446)

0.075 0.70
(0.447)

0.722
(0.432)

0.198 0.864
(0.479)

0.865
(0.428)

0.304

Zα 0.672
(0.508)

0.66
(0.465)

0.137 0.888
(0.538)

0.882
(0.453)

0.328 0.974
(0.555)

0.969
(0.419)

0.459

Zt 0.632
(0.536)

0.593
(0.455)

0.104 0.86
(0.566)

0.834
(0.454)

0.276 0.965
(0.59)

0.953
(0.42)

0.414

GH-ADF 0.63
(0.572)

0.586
(0.503)

0.089 0.687
(0.462)

0.626
(0.355)

0.183 0.815
(0.48)

0.775
(0.326)

0.30

GH-Zα 0.785
(0.699)

0.684
(0.518)

0.12 0.822
(0.614)

0.72
(0.401)

0.214 0.916
(0.59)

0.859
(0.339)

0.347

GH-Z t 0.766
(0.709)

0.606
(0.498)

0.095 0.796
(0.612)

0.655
(0.373)

0.183 0.899
(0.61)

0.819
(0.336)

0.316

MLS 0.771 0.516 0.832 0.562 0.38 0.722 0.375 0.28 0.676

β1 = 1, σ1 = 0.5

ADF 0.482
(0.406)

0.596
(0.511)

0.085 0.727
(0.436)

0.772
(0.449)

0.227 0.877
(0.533)

0.895
(0.485)

0.334

Zα 0.74
(0.609)

0.722
(0.53)

0.145 0.918
(0.617)

0.909
(0.509)

0.356 0.984
(0.656)

0.98
(0.464)

0.478

Zt 0.717
(0.636)

0.661
(0.54)

0.124 0.90
(0.656)

0.878
(0.513)

0.304 0.979
(0.698)

0.966
(0.468)

0.435

GH-ADF 0.662
(0.612)

0.643
(0.556)

0.094 0.706
(0.507)

0.678
(0.404)

0.195 0.837
(0.527)

0.819
(0.345)

0.292

GH-Zα 0.831
(0.762)

0.722
(0.548)

0.113 0.866
(0.69)

0.761
(0.439)

0.213 0.947
(0.702)

0.883
(0.356)

0.32

GH-Zt 0.812
(0.768)

0.66
(0.542)

0.098 0.848
(0.697)

0.707
(0.418)

0.193 0.935
(0.711)

0.853
(0.358)

0.307

MLS 0.768 0.483 0.832 0.577 0.359 0.709 0.39 0.25 0.656

β1 = 1, σ1 = 1

ADF 0.505
(0.43)

0.652
(0.565)

0.091 0.749
(0.442)

0.808
(0.481)

0.28 0.89
(0.532)

0.912
(0.495)

0.403

Zα 0.806
(0.668)

0.786
(0.579)

0.168 0.947
(0.658)

0.94
(0.497)

0.429 0.991
(0.784)

0.989
(0.582)

0.551

Zt 0.789
(0.688)

0.732
(0.57)

0.134 0.933
(0.689)

0.906
(0.50)

0.375 0.987
(0.791)

0.981
(0.544)

0.516

GH-ADF 0.685
(0.63)

0.692
(0.58)

0.109 0.728
(0.536)

0.736
(0.452)

0.223 0.859
(0.613)

0.85
(0.45)

0.336

GH-Zα 0.87
(0.816)

0.764
(0.628)

0.125 0.90
(0.772)

0.798
(0.506)

0.24 0.968
(0.833)

0.908
(0.51)

0.372

GH-Zt 0.862
(0.816)

0.711
(0.592)

0.113 0.89
(0.774)

0.751
(0.476)

0.218 0.962
(0.839)

0.884
(0.50)

0.345

MLS 0.806 0.409 0.824 0.639 0.288 0.674 0.446 0.192 0.616
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Table 7a - Change in slope, with constant (α0 = 1, T = 100)

β1 = 4, σ1 = 0 p00 = p11 = 0.98 p00 = p11 = 0.95 p00 = 0.95, p11 = 0.9

ρ = 0 0.75 1 0 0.75 1 0 0.75 1

ADF 0.326
(0.255)

0.261
(0.18)

0.096 0.324
(0.133)

0.20
(0.107)

0.186 0.492
(0.137)

0.46
(0.109)

0.326

Zα 0.494
(0.256)

0.478
(0.121)

0.26 0.526
(0.109)

0.524
(0.088)

0.40 0.705
(0.119)

0.697
(0.095)

0.57

Zt 0.41
(0.244)

0.385
(0.144)

0.177 0.447
(0.11)

0.434
(0.087)

0.295 0.64
(0.129)

0.63
(0.098)

0.469

GH-ADF 0.648
(0.338)

0.536
(0.134)

0.275 0.50
(0.17)

0.461
(0.112)

0.32 0.572
(0.133)

0.534
(0.086)

0.398

GH-Zα 0.713
(0.441)

0.592
(0.159)

0.322 0.473
(0.178)

0.426
(0.109)

0.279 0.514
(0.145)

0.475
(0.088)

0.33

GH-Z t 0.636
(0.352)

0.493
(0.132)

0.281 0.462
(0.169)

0.408
(0.105)

0.277 0.532
(0.14)

0.48
(0.086)

0.354

MLS 0.476 0.491 0.675 0.455 0.452 0.543 0.342 0.351 0.466

β1 = 4, σ1 = 0.5

ADF 0.351
(0.281)

0.271
(0.193)

0.096 0.348
(0.155)

0.30
(0.116)

0.172 0.524
(0.179)

0.471
(0.125)

0.289

Zα 0.504
(0.286)

0.486
(0.163)

0.242 0.539
(0.128)

0.529
(0.104)

0.374 0.723
(0.161)

0.704
(0.121)

0.514

Zt 0.432
(0.277)

0.39
(0.163)

0.167 0.466
(0.139)

0.414
(0.10)

0.272 0.658
(0.174)

0.638
(0.126)

0.421

GH-ADF 0.67
(0.395)

0.532
(0.152)

0.239 0.523
(0.218)

0.46
(0.141)

0.28 0.592
(0.183)

0.527
(0.108)

0.352

GH-Zα 0.728
(0.499)

0.572
(0.168)

0.262 0.491
(0.226)

0.421
(0.134)

0.237 0.542
(0.21)

0.469
(0.11)

0.282

GH-Zt 0.663
(0.397)

0.492
(0.138)

0.235 0.49
(0.223)

0.41
(0.132)

0.244 0.56
(0.208)

0.474
(0.111)

0.309

MLS 0.474 0.476 0.674 0.453 0.449 0.565 0.338 0.337 0.494

β1 = 4, σ1 = 1

ADF 0.379
(0.307)

0.285
(0.209)

0.092 0.376
(0.188)

0.316
(0.128)

0.173 0.551
(0.217)

0.487
(0.136)

0.271

Zα 0.526
(0.309)

0.496
(0.17)

0.201 0.554
(0.149)

0.541
(0.109)

0.339 0.739
(0.207)

0.716
(0.138)

0.478

Zt 0.463
(0.302)

0.403
(0.168)

0.198 0.487
(0.159)

0.453
(0.10)

0.328 0.68
(0.223)

0.647
(0.139)

0.396

GH-ADF 0.697
(0.449)

0.527
(0.166)

0.119 0.547
(0.249)

0.461
(0.148)

0.153 0.619
(0.251)

0.531
(0.131)

0.31

GH-Zα 0.743
(0.54)

0.56
(0.176)

0.148 0.518
(0.275)

0.42
(0.151)

0.169 0.576
(0.283)

0.469
(0.139)

0.234

GH-Zt 0.692
(0.467)

0.493
(0.157)

0.144 0.523
(0.265)

0.406
(0.142)

0.175 0.592
(0.277)

0.478
(0.128)

0.266

MLS 0.514 0.491 0.743 0.49 0.46 0.624 0.372 0.352 0.516
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Table 7b - Change in slope, with constant (α0 = 1, T = 200)

β1 = 4, σ1 = 0 p00 = p11 = 0.98 p00 = p11 = 0.95 p00 = 0.95, p11 = 0.9

ρ = 0 0.75 1 0 0.75 1 0 0.75 1

ADF 0.301
(0.163)

0.277
(0.144)

0.152 0.59
(0.124)

0.574
(0.109)

0.45 0.803
(0.123)

0.796
(0.112)

0.657

Zα 0.433
(0.136)

0.452
(0.136)

0.322 0.789
(0.102)

0.795
(0.098)

0.684 0.95
(0.109)

0.949
(0.101)

0.875

Zt 0.354
(0.138)

0.362
(0.131)

0.236 0.73
(0.10)

0.73
(0.096)

0.596 0.93
(0.118)

0.927
(0.105)

0.824

GH-ADF 0.458
(0.227)

0.425
(0.188)

0.223 0.525
(0.127)

0.501
(0.116)

0.371 0.697
(0.13)

0.684
(0.115)

0.564

GH-Zα 0.584
(0.201)

0.563
(0.129)

0.351 0.642
(0.124)

0.622
(0.096)

0.498 0.804
(0.129)

0.796
(0.107)

0.698

GH-Z t 0.501
(0.211)

0.46
(0.142)

0.28 0.571
(0.13)

0.557
(0.103)

0.433 0.764
(0.127)

0.751
(0.104)

0.646

MLS 0.664 0.639 0.742 0.43 0.429 0.552 0.288 0.282 0.437

β1 = 4, σ1 = 0.5

ADF 0.321
(0.188)

0.295
(0.161)

0.141 0.605
(0.139)

0.587
(0.123)

0.423 0.812
(0.166)

0.804
(0.14)

0.605

Zα 0.444
(0.156)

0.471
(0.153)

0.30 0.796
(0.128)

0.801
(0.124)

0.648 0.951
(0.16)

0.952
(0.141)

0.829

Zt 0.371
(0.162)

0.377
(0.146)

0.223 0.737
(0.132)

0.74
(0.118)

0.559 0.932
(0.168)

0.932
(0.148)

0.774

GH-ADF 0.478
(0.265)

0.438
(0.212)

0.186 0.544
(0.153)

0.513
(0.132)

0.335 0.717
(0.166)

0.689
(0.137)

0.523

GH-Zα 0.602
(0.251)

0.572
(0.162)

0.298 0.652
(0.169)

0.629
(0.13)

0.454 0.817
(0.18)

0.802
(0.134)

0.644

GH-Zt 0.523
(0.256)

0.471
(0.178)

0.24 0.588
(0.16)

0.563
(0.124)

0.385 0.776
(0.177)

0.757
(0.131)

0.598

MLS 0.678 0.617 0.759 0.448 0.423 0.572 0.293 0.273 0.476

β1 = 4, σ1 = 1

ADF 0.334
(0.211)

0.315
(0.178)

0.135 0.618
(0.159)

0.598
(0.135)

0.411 0.82
(0.201)

0.816
(0.161)

0.576

Zα 0.463
(0.184)

0.486
(0.18)

0.315 0.803
(0.153)

0.808
(0.142)

0.643 0.952
(0.199)

0.954
(0.177)

0.795

Zt 0.393
(0.18)

0.40
(0.162)

0.30 0.745
(0.16)

0.749
(0.134)

0.65 0.936
(0.202)

0.936
(0.164)

0.75

GH-ADF 0.504
(0.316)

0.449
(0.251)

0.106 0.558
(0.188)

0.523
(0.15)

0.238 0.732
(0.224)

0.699
(0.164)

0.495

GH-Zα 0.622
(0.312)

0.578
(0.209)

0.201 0.67
(0.217)

0.638
(0.158)

0.362 0.834
(0.24)

0.809
(0.167)

0.606

GH-Zt 0.553
(0.307)

0.49
(0.205)

0.164 0.61
(0.198)

0.571
(0.137)

0.316 0.795
(0.242)

0.767
(0.163)

0.552

MLS 0.712 0.62 0.822 0.508 0.448 0.664 0.335 0.31 0.494
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Table 8a - Change in intercept (β0 = 1, T = 100)

α1 = 1, σ1 = 0 p00 = p11 = 0.98 p00 = p11 = 0.95 p00 = 0.95, p11 = 0.9

ρ = 0 0.75 1 0 0.75 1 0 0.75 1

ADF 0.877
(0.864)

0.802
(0.738)

0.067 0.889
(0.877)

0.811
(0.738)

0.07 0.926
(0.913)

0.826
(0.755)

0.071

Zα 1.00
(1.00)

0.917
(0.863)

0.075 1.00
(1.00)

0.926
(0.85)

0.076 1.00
(1.00)

0.931
(0.859)

0.078

Zt 1.00
(1.00)

0.893
(0.823)

0.07 1.00
(1.00)

0.903
(0.827)

0.082 1.00
(1.00)

0.908
(0.822)

0.08

GH-ADF 0.967
(0.958)

0.661
(0.443)

0.122 0.949
(0.938)

0.634
(0.423)

0.122 0.954
(0.939)

0.655
(0.392)

0.128

GH-Zα 1.00
(1.00)

0.415
(0.573)

0.022 1.00
(1.00)

0.391
(0.548)

0.021 1.00
(1.00)

0.393
(0.541)

0.024

GH-Z t 1.00
(1.00)

0.63
(0.546)

0.075 1.00
(1.00)

0.614
(0.521)

0.075 1.00
(1.00)

0.628
(0.507)

0.079

MLS 0.285 0.258 0.758 0.263 0.249 0.764 0.191 0.239 0.759

inf Lc 0.169 0.313 0.70 0.209 0.325 0.704 0.148 0.30 0.699

α1 = 1, σ1 = 0.5

ADF 0.908
(0.897)

0.809
(0.755)

0.07 0.918
(0.887)

0.818
(0.654)

0.101 0.939
(0.915)

0.842
(0.617)

0.136

Zα 1.00
(1.00)

0.926
(0.796)

0.097 1.00
(1.00)

0.937
(0.688)

0.151 1.00
(1.00)

0.939
(0.644)

0.196

Zt 1.00
(1.00)

0.902
(0.797)

0.084 1.00
(1.00)

0.916
(0.684)

0.124 1.00
(1.00)

0.923
(0.664)

0.182

GH-ADF 0.966
(0.949)

0.676
(0.357)

0.144 0.958
(0.933)

0.678
(0.287)

0.174 0.96
(0.931)

0.677
(0.27)

0.209

GH-Zα 1.00
(1.00)

0.436
(0.45)

0.049 1.00
(1.00)

0.432
(0.425)

0.051 1.00
(1.00)

0.43
(0.344)

0.065

GH-Zt 1.00
(1.00)

0.656
(0.476)

0.093 1.00
(1.00)

0.649
(0.404)

0.114 1.00
(1.00)

0.657
(0.348)

0.144

MLS 0.226 0.248 0.752 0.201 0.238 0.705 0.146 0.228 0.654

inf Lc 0.127 0.29 0.686 0.148 0.306 0.659 0.106 0.289 0.652

α1 = 1, σ1 = 1

ADF 0.916
(0.905)

0.808
(0.744)

0.073 0.929
(0.895)

0.82
(0.623)

0.119 0.951
(0.915)

0.85
(0.544)

0.177

Zα 1.00
(1.00)

0.932
(0.738)

0.124 1.00
(1.00)

0.942
(0.646)

0.195 1.00
(1.00)

0.945
(0.531)

0.279

Zt 1.00
(1.00)

0.907
(0.76)

0.096 1.00
(1.00)

0.92
(0.659)

0.149 1.00
(1.00)

0.927
(0.535)

0.257

GH-ADF 0.964
(0.921)

0.694
(0.208)

0.196 0.958
(0.921)

0.692
(0.224)

0.217 0.963
(0.917)

0.706
(0.218)

0.266

GH-Zα 1.00
(1.00)

0.464
(0.244)

0.09 1.00
(1.00)

0.466
(0.324)

0.082 1.00
(1.00)

0.472
(0.27)

0.107

GH-Zt 1.00
(1.00)

0.663
(0.301)

0.14 1.00
(1.00)

0.674
(0.31)

0.154 1.00
(1.00)

0.69
(0.251)

0.198

MLS 0.182 0.25 0.738 0.156 0.247 0.666 0.117 0.229 0.601

inf Lc 0.094 0.281 0.665 0.109 0.289 0.616 0.08 0.277 0.606
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Table 8b - Change in intercept (β0 = 1, T = 200)

α1 = 1, σ1 = 0 p00 = p11 = 0.98 p00 = p11 = 0.95 p00 = 0.95, p11 = 0.9

ρ = 0 0.75 1 0 0.75 1 0 0.75 1

ADF 0.942
(0.934)

0.97
(0.966)

0.057 0.977
(0.972)

0.978
(0.974)

0.062 0.991
(0.987)

0.981
(0.974)

0.063

Zα 1.00
(1.00)

1.00
(1.00)

0.062 1.00
(1.00)

1.00
(1.00)

0.065 1.00
(1.00)

1.00
(1.00)

0.065

Zt 1.00
(1.00)

1.00
(1.00)

0.061 1.00
(1.00)

1.00
(1.00)

0.07 1.00
(1.00)

1.00
(1.00)

0.071

GH-ADF 0.949
(0.932)

0.969
(0.922)

0.113 0.955
(0.935)

0.968
(0.927)

0.115 0.973
(0.959)

0.966
(0.924)

0.113

GH-Zα 1.00
(1.00)

0.99
(0.992)

0.046 1.00
(1.00)

0.987
(0.986)

0.053 1.00
(1.00)

0.99
(0.989)

0.056

GH-Z t 1.00
(1.00)

0.995
(0.986)

0.073 1.00
(1.00)

0.992
(0.981)

0.076 1.00
(1.00)

0.995
(0.986)

0.078

MLS 0.534 0.169 0.89 0.355 0.136 0.883 0.23 0.126 0.88

inf Lc 0.454 0.474 0.554 0.379 0.456 0.544 0.257 0.422 0.54

α1 = 1, σ1 = 0.5

ADF 0.975
(0.958)

0.972
(0.959)

0.072 0.99
(0.944)

0.98
(0.928)

0.175 0.997
(0.949)

0.982
(0.905)

0.248

Zα 1.00
(1.00)

1.00
(1.00)

0.108 1.00
(1.00)

1.00
(0.991)

0.244 1.00
(1.00)

1.00
(0.977)

0.326

Zt 1.00
(1.00)

1.00
(1.00)

0.088 1.00
(1.00)

1.00
(0.99)

0.208 1.00
(1.00)

1.00
(0.98)

0.315

GH-ADF 0.97
(0.944)

0.967
(0.90)

0.138 0.969
(0.922)

0.959
(0.806)

0.241 0.98
(0.948)

0.968
(0.749)

0.32

GH-Zα 1.00
(1.00)

0.99
(0.946)

0.091 1.00
(1.00)

0.992
(0.899)

0.162 1.00
(1.00)

0.993
(0.834)

0.256

GH-Zt 1.00
(1.00)

0.996
(0.95)

0.109 1.00
(1.00)

0.995
(0.901)

0.196 1.00
(1.00)

0.996
(0.832)

0.299

MLS 0.411 0.162 0.853 0.259 0.139 0.76 0.161 0.128 0.717

inf Lc 0.343 0.446 0.539 0.26 0.418 0.583 0.163 0.403 0.639

α1 = 1, σ1 = 1

ADF 0.984
(0.967)

0.97
(0.947)

0.092 0.994
(0.947)

0.978
(0.895)

0.264 0.999
(0.944)

0.981
(0.849)

0.367

Zα 1.00
(1.00)

1.00
(1.00)

0.15 1.00
(1.00)

1.00
(0.97)

0.382 1.00
(1.00)

1.00
(0.912)

0.49

Zt 1.00
(1.00)

1.00
(1.00)

0.126 1.00
(1.00)

1.00
(0.972)

0.331 1.00
(1.00)

1.00
(0.912)

0.462

GH-ADF 0.973
(0.938)

0.956
(0.83)

0.158 0.976
(0.928)

0.958
(0.732)

0.296 0.982
(0.944)

0.968
(0.624)

0.43

GH-Zα 1.00
(1.00)

0.987
(0.887)

0.129 1.00
(1.00)

0.995
(0.841)

0.242 1.00
(1.00)

0.991
(0.683)

0.379

GH-Zt 1.00
(1.00)

0.993
(0.894)

0.142 1.00
(1.00)

0.996
(0.843)

0.268 1.00
(1.00)

0.996
(0.708)

0.422

MLS 0.31 0.165 0.832 0.189 0.148 0.697 0.125 0.134 0.63

inf Lc 0.264 0.423 0.534 0.194 0.394 0.635 0.117 0.39 0.691
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Table 9a - Change in intercept (β0 = 1, T = 100)

α1 = 4, σ1 = 0 p00 = p11 = 0.98 p00 = p11 = 0.95 p00 = 0.95, p11 = 0.9

ρ = 0 0.75 1 0 0.75 1 0 0.75 1

ADF 0.447
(0.413)

0.442
(0.377)

0.069 0.501
(0.413)

0.489
(0.316)

0.092 0.683
(0.577)

0.648
(0.412)

0.115

Zα 0.85
(0.757)

0.585
(0.452)

0.09 0.918
(0.727)

0.648
(0.363)

0.124 0.972
(0.843)

0.79
(0.471)

0.168

Zt 0.881
(0.805)

0.538
(0.414)

0.072 0.937
(0.788)

0.59
(0.336)

0.104 0.98
(0.902)

0.75
(0.456)

0.157

GH-ADF 0.816
(0.764)

0.518
(0.296)

0.135 0.74
(0.608)

0.413
(0.173)

0.166 0.80
(0.627)

0.496
(0.187)

0.199

GH-Zα 0.907
(0.92)

0.335
(0.391)

0.036 0.808
(0.821)

0.214
(0.231)

0.046 0.851
(0.82)

0.275
(0.239)

0.061

GH-Z t 0.967
(0.942)

0.472
(0.352)

0.086 0.924
(0.858)

0.362
(0.217)

0.107 0.956
(0.838)

0.435
(0.216)

0.146

MLS 0.60 0.45 0.76 0.605 0.421 0.734 0.452 0.34 0.675

inf Lc 0.369 0.457 0.67 0.508 0.477 0.664 0.396 0.384 0.659

α1 = 4, σ1 = 0.5

ADF 0.517
(0.475)

0.543
(0.458)

0.068 0.563
(0.464)

0.585
(0.356)

0.103 0.748
(0.588)

0.719
(0.417)

0.142

Zα 0.975
(0.902)

0.692
(0.502)

0.104 0.99
(0.88)

0.743
(0.361)

0.159 0.999
(0.948)

0.855
(0.438)

0.223

Zt 0.984
(0.955)

0.647
(0.499)

0.081 0.995
(0.939)

0.697
(0.35)

0.128 0.999
(0.978)

0.815
(0.45)

0.195

GH-ADF 0.836
(0.787)

0.563
(0.266)

0.166 0.753
(0.665)

0.492
(0.166)

0.194 0.81
(0.717)

0.541
(0.167)

0.23

GH-Zα 0.973
(0.972)

0.354
(0.35)

0.051 0.94
(0.93)

0.264
(0.229)

0.061 0.969
(0.946)

0.311
(0.212)

0.082

GH-Zt 0.993
(0.98)

0.516
(0.314)

0.101 0.985
(0.948)

0.432
(0.214)

0.127 0.997
(0.962)

0.50
(0.208)

0.176

MLS 0.568 0.412 0.75 0.583 0.378 0.684 0.428 0.313 0.65

inf Lc 0.354 0.422 0.674 0.476 0.444 0.641 0.362 0.361 0.629

α1 = 4, σ1 = 1

ADF 0.572
(0.532)

0.617
(0.534)

0.072 0.625
(0.48)

0.647
(0.406)

0.117 0.789
(0.621)

0.763
(0.398)

0.18

Zα 0.998
(0.968)

0.775
(0.516)

0.123 0.999
(0.961)

0.818
(0.379)

0.204 0.999
(0.983)

0.89
(0.388)

0.287

Zt 0.999
(0.988)

0.732
(0.545)

0.097 0.999
(0.979)

0.776
(0.362)

0.151 0.999
(0.996)

0.862
(0.39)

0.26

GH-ADF 0.853
(0.783)

0.611
(0.17)

0.20 0.782
(0.676)

0.566
(0.144)

0.218 0.844
(0.753)

0.604
(0.146)

0.271

GH-Zα 0.996
(0.976)

0.39
(0.185)

0.088 0.984
(0.965)

0.318
(0.198)

0.085 0.994
(0.979)

0.356
(0.169)

0.113

GH-Zt 0.999
(0.986)

0.563
(0.222)

0.138 0.998
(0.976)

0.515
(0.201)

0.154 0.999
(0.986)

0.566
(0.164)

0.205

MLS 0.539 0.382 0.734 0.551 0.352 0.658 0.397 0.292 0.598

inf Lc 0.334 0.392 0.666 0.45 0.408 0.622 0.325 0.335 0.594
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Table 9b - Change in intercept (β0 = 1, T = 200)

α1 = 4, σ1 = 0 p00 = p11 = 0.98 p00 = p11 = 0.95 p00 = 0.95, p11 = 0.9

ρ = 0 0.75 1 0 0.75 1 0 0.75 1

ADF 0.422
(0.375)

0.789
(0.743)

0.07 0.795
(0.658)

0.912
(0.82)

0.109 0.926
(0.809)

0.959
(0.879)

0.149

Zα 0.999
(0.989)

0.913
(0.832)

0.08 1.00
(1.00)

0.988
(0.918)

0.132 1.00
(1.00)

0.998
(0.959)

0.174

Zt 0.999
(0.997)

0.884
(0.81)

0.075 1.00
(1.00)

0.981
(0.905)

0.121 1.00
(1.00)

0.998
(0.956)

0.168

GH-ADF 0.626
(0.513)

0.756
(0.583)

0.123 0.726
(0.469)

0.819
(0.513)

0.18 0.876
(0.648)

0.902
(0.636)

0.216

GH-Zα 0.995
(0.993)

0.722
(0.692)

0.064 0.998
(0.995)

0.782
(0.642)

0.096 1.00
(1.00)

0.901
(0.702)

0.141

GH-Z t 0.999
(0.997)

0.762
(0.677)

0.082 1.00
(0.998)

0.835
(0.628)

0.13 1.00
(1.00)

0.932
(0.703)

0.18

MLS 0.884 0.471 0.865 0.724 0.326 0.817 0.504 0.214 0.784

inf Lc 0.781 0.782 0.545 0.787 0.728 0.548 0.609 0.582 0.561

α1 = 4, σ1 = 0.5

ADF 0.488
(0.405)

0.854
(0.798)

0.078 0.81
(0.576)

0.925
(0.776)

0.189 0.937
(0.71)

0.965
(0.796)

0.263

Zα 1.00
(1.00)

0.973
(0.889)

0.108 1.00
(1.00)

0.998
(0.82)

0.269 1.00
(1.00)

0.999
(0.842)

0.352

Zt 1.00
(1.00)

0.963
(0.882)

0.088 1.00
(1.00)

0.997
(0.826)

0.226 1.00
(1.00)

0.999
(0.855)

0.33

GH-ADF 0.69
(0.566)

0.844
(0.622)

0.134 0.78
(0.512)

0.887
(0.498)

0.25 0.902
(0.623)

0.934
(0.495)

0.342

GH-Zα 1.00
(1.00)

0.83
(0.677)

0.098 1.00
(1.00)

0.875
(0.565)

0.167 1.00
(1.00)

0.95
(0.558)

0.272

GH-Zt 1.00
(1.00)

0.866
(0.70)

0.112 1.00
(1.00)

0.916
(0.567)

0.206 1.00
(1.00)

0.968
(0.556)

0.317

MLS 0.871 0.41 0.852 0.723 0.286 0.738 0.506 0.198 0.689

inf Lc 0.753 0.748 0.545 0.76 0.673 0.594 0.569 0.547 0.651

α1 = 4, σ1 = 1

ADF 0.551
(0.452)

0.868
(0.811)

0.091 0.831
(0.551)

0.933
(0.762)

0.269 0.939
(0.663)

0.968
(0.743)

0.369

Zα 1.00
(1.00)

0.992
(0.90)

0.154 1.00
(1.00)

0.999
(0.778)

0.402 1.00
(1.00)

0.999
(0.747)

0.492

Zt 1.00
(1.00)

0.986
(0.906)

0.124 1.00
(1.00)

0.999
(0.795)

0.349 1.00
(1.00)

0.999
(0.753)

0.464

GH-ADF 0.724
(0.591)

0.888
(0.626)

0.155 0.807
(0.54)

0.912
(0.46)

0.306 0.90
(0.663)

0.949
(0.434)

0.428

GH-Zα 1.00
(1.00)

0.896
(0.642)

0.132 1.00
(1.00)

0.936
(0.572)

0.237 1.00
(1.00)

0.97
(0.487)

0.386

GH-Zt 1.00
(1.00)

0.922
(0.669)

0.144 1.00
(1.00)

0.957
(0.576)

0.273 1.00
(1.00)

0.98
(0.506)

0.434

MLS 0.853 0.364 0.828 0.698 0.26 0.692 0.474 0.182 0.618

inf Lc 0.732 0.679 0.547 0.722 0.614 0.636 0.512 0.501 0.686
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Table 10a - Change in slope and in the intercept (T = 100)

α1 = β1 = 1, σ1 = 0 p00 = p11 = 0.98 p00 = p11 = 0.95 p00 = 0.95, p11 = 0.9

ρ = 0 0.75 1 0 0.75 1 0 0.75 1

ADF 0.531
(0.509)

0.425
(0.39)

0.062 0.541
(0.43)

0.44
(0.28)

0.107 0.685
(0.488)

0.573
(0.302)

0.154

Zα 0.719
(0.626)

0.617
(0.42)

0.135 0.733
(0.506)

0.64
(0.273)

0.203 0.849
(0.545)

0.775
(0.286)

0.272

Zt 0.698
(0.642)

0.529
(0.403)

0.103 0.703
(0.532)

0.555
(0.282)

0.161 0.826
(0.59)

0.71
(0.30)

0.233

GH-ADF 0.856
(0.776)

0.524
(0.27)

0.159 0.73
(0.544)

0.474
(0.178)

0.193 0.77
(0.528)

0.538
(0.166)

0.256

GH-Zα 0.86
(0.838)

0.362
(0.286)

0.07 0.683
(0.63)

0.271
(0.19)

0.077 0.697
(0.619)

0.296
(0.203)

0.092

GH-Z t 0.888
(0.846)

0.49
(0.284)

0.13 0.769
(0.638)

0.42
(0.185)

0.151 0.803
(0.627)

0.474
(0.189)

0.201

MLS 0.498 0.422 0.736 0.50 0.405 0.66 0.372 0.332 0.634

inf Lc 0.34 0.392 0.668 0.384 0.395 0.62 0.291 0.334 0.60

α1 = β1 = 1, σ1 = 0.5

ADF 0.566
(0.528)

0.483
(0.424)

0.069 0.588
(0.468)

0.50
(0.311)

0.118 0.728
(0.561)

0.632
(0.343)

0.167

Zα 0.788
(0.704)

0.659
(0.454)

0.128 0.80
(0.589)

0.688
(0.316)

0.209 0.896
(0.665)

0.804
(0.327)

0.268

Zt 0.78
(0.719)

0.591
(0.438)

0.104 0.781
(0.614)

0.609
(0.298)

0.171 0.882
(0.693)

0.752
(0.319)

0.244

GH-ADF 0.876
(0.802)

0.526
(0.21)

0.182 0.772
(0.605)

0.482
(0.157)

0.208 0.817
(0.628)

0.544
(0.15)

0.238

GH-Zα 0.894
(0.877)

0.336
(0.254)

0.076 0.754
(0.722)

0.263
(0.193)

0.073 0.782
(0.728)

0.283
(0.188)

0.085

GH-Zt 0.918
(0.818)

0.484
(0.222)

0.141 0.832
(0.712)

0.444
(0.168)

0.158 0.876
(0.731)

0.487
(0.171)

0.19

MLS 0.49 0.406 0.732 0.491 0.388 0.66 0.347 0.32 0.624

inf Lc 0.33 0.389 0.659 0.374 0.386 0.62 0.276 0.336 0.606

α1 = β1 = 1, σ1 = 1

ADF 0.600
(0.572)

0.529
(0.473)

0.069 0.623
(0.49)

0.557
(0.337)

0.13 0.765
(0.592)

0.671
(0.345)

0.188

Zα 0.835
(0.763)

0.698
(0.489)

0.135 0.856
(0.668)

0.73
(0.326)

0.229 0.936
(0.749)

0.834
(0.336)

0.307

Zt 0.826
(0.786)

0.632
(0.481)

0.109 0.846
(0.696)

0.662
(0.324)

0.19 0.924
(0.769)

0.784
(0.316)

0.274

GH-ADF 0.888
(0.796)

0.548
(0.139)

0.21 0.803
(0.631)

0.511
(0.137)

0.23 0.846
(0.68)

0.553
(0.134)

0.258

GH-Zα 0.917
(0.882)

0.346
(0.139)

0.105 0.81
(0.762)

0.286
(0.171)

0.084 0.856
(0.795)

0.286
(0.162)

0.094

GH-Zt 0.945
(0.888)

0.504
(0.153)

0.168 0.882
(0.769)

0.471
(0.161)

0.176 0.916
(0.801)

0.51
(0.166)

0.206

MLS 0.465 0.385 0.735 0.476 0.37 0.649 0.336 0.307 0.607

inf Lc 0.313 0.372 0.662 0.358 0.374 0.602 0.264 0.332 0.591
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Table 10b - Change in slope and in the intercept (T = 200)

α1 = β1 = 1, σ1 = 0 p00 = p11 = 0.98 p00 = p11 = 0.95 p00 = 0.95, p11 = 0.9

ρ = 0 0.75 1 0 0.75 1 0 0.75 1

ADF 0.438
(0.379)

0.521
(0.451)

0.074 0.70
(0.447)

0.723
(0.437)

0.202 0.86
(0.477)

0.862
(0.419)

0.307

Zα 0.662
(0.517)

0.658
(0.464)

0.139 0.888
(0.537)

0.881
(0.451)

0.332 0.973
(0.564)

0.968
(0.426)

0.462

Zt 0.629
(0.527)

0.591
(0.446)

0.115 0.858
(0.572)

0.838
(0.456)

0.29 0.964
(0.595)

0.955
(0.425)

0.432

GH-ADF 0.651
(0.538)

0.608
(0.443)

0.138 0.707
(0.445)

0.65
(0.31)

0.251 0.831
(0.446)

0.789
(0.263)

0.381

GH-Zα 0.768
(0.68)

0.622
(0.438)

0.124 0.775
(0.573)

0.627
(0.332)

0.202 0.878
(0.555)

0.775
(0.277)

0.327

GH-Z t 0.782
(0.682)

0.61
(0.414)

0.128 0.808
(0.591)

0.66
(0.326)

0.233 0.904
(0.572)

0.813
(0.278)

0.383

MLS 0.772 0.517 0.828 0.566 0.384 0.726 0.377 0.282 0.665

inf Lc 0.678 0.612 0.547 0.646 0.619 0.615 0.524 0.532 0.676

α1 = β1 = 1, σ1 = 0.5

ADF 0.476
(0.397)

0.599
(0.512)

0.083 0.731
(0.424)

0.767
(0.441)

0.228 0.881
(0.531)

0.895
(0.486)

0.334

Zα 0.739
(0.593)

0.726
(0.519)

0.148 0.919
(0.588)

0.913
(0.463)

0.354 0.984
(0.695)

0.98
(0.528)

0.477

Zt 0.714
(0.603)

0.664
(0.486)

0.124 0.899
(0.622)

0.877
(0.462)

0.315 0.98
(0.72)

0.968
(0.528)

0.448

GH-ADF 0.687
(0.574)

0.656
(0.483)

0.147 0.737
(0.473)

0.69
(0.327)

0.261 0.85
(0.548)

0.824
(0.33)

0.377

GH-Zα 0.822
(0.751)

0.668
(0.482)

0.118 0.836
(0.663)

0.666
(0.36)

0.198 0.921
(0.706)

0.809
(0.341)

0.301

GH-Zt 0.838
(0.761)

0.662
(0.476)

0.138 0.865
(0.678)

0.708
(0.351)

0.248 0.937
(0.716)

0.846
(0.331)

0.374

MLS 0.774 0.484 0.83 0.587 0.357 0.712 0.398 0.247 0.66

inf Lc 0.704 0.629 0.548 0.644 0.622 0.63 0.511 0.52 0.68

α1 = β1 = 1, σ1 = 1

ADF 0.505
(0.42)

0.648
(0.561)

0.092 0.746
(0.436)

0.811
(0.476)

0.283 0.89
(0.53)

0.912
(0.489)

0.404

Zα 0.798
(0.658)

0.783
(0.554)

0.171 0.945
(0.638)

0.939
(0.469)

0.434 0.991
(0.738)

0.988
(0.509)

0.555

Zt 0.787
(0.676)

0.728
(0.54)

0.141 0.929
(0.671)

0.905
(0.465)

0.395 0.987
(0.768)

0.981
(0.51)

0.526

GH-ADF 0.716
(0.593)

0.703
(0.478)

0.148 0.752
(0.472)

0.745
(0.316)

0.301 0.866
(0.578)

0.856
(0.316)

0.429

GH-Zα 0.868
(0.782)

0.708
(0.462)

0.133 0.884
(0.728)

0.712
(0.371)

0.228 0.946
(0.784)

0.839
(0.363)

0.344

GH-Zt 0.885
(0.795)

0.716
(0.439)

0.148 0.909
(0.729)

0.763
(0.342)

0.282 0.963
(0.794)

0.876
(0.335)

0.42

MLS 0.766 0.46 0.817 0.586 0.34 0.679 0.406 0.238 0.617

inf Lc 0.706 0.632 0.543 0.639 0.607 0.636 0.491 0.516 0.689
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Table 11a - Change in slope and in the intercept (T = 100)

α1 = β1 = 4, σ1 = 0 p00 = p11 = 0.98 p00 = p11 = 0.95 p00 = 0.95, p11 = 0.9

ρ = 0 0.75 1 0 0.75 1 0 0.75 1

ADF 0.324
(0.25)

0.261
(0.181)

0.099 0.322
(0.129)

0.288
(0.105)

0.184 0.493
(0.137)

0.458
(0.105)

0.324

Zα 0.485
(0.255)

0.469
(0.119)

0.26 0.522
(0.106)

0.523
(0.088)

0.395 0.702
(0.117)

0.698
(0.091)

0.567

Zt 0.408
(0.246)

0.379
(0.142)

0.196 0.438
(0.111)

0.425
(0.092)

0.317 0.635
(0.121)

0.624
(0.089)

0.493

GH-ADF 0.70
(0.331)

0.587
(0.119)

0.364 0.523
(0.144)

0.49
(0.09)

0.385 0.584
(0.129)

0.56
(0.078)

0.473

GH-Zα 0.699
(0.427)

0.554
(0.14)

0.33 0.406
(0.156)

0.352
(0.097)

0.25 0.428
(0.134)

0.37
(0.076)

0.282

GH-Z t 0.679
(0.338)

0.55
(0.115)

0.35 0.486
(0.142)

0.43
(0.088)

0.33 0.535
(0.128)

0.495
(0.077)

0.405

MLS 0.50 0.524 0.677 0.49 0.469 0.55 0.37 0.365 0.461

inf Lc 0.33 0.385 0.565 0.384 0.392 0.485 0.306 0.314 0.424

α1 = β1 = 4, σ1 = 0.5

ADF 0.349
(0.281)

0.275
(0.194)

0.096 0.353
(0.157)

0.298
(0.111)

0.173 0.519
(0.179)

0.471
(0.124)

0.292

Zα 0.499
(0.283)

0.476
(0.138)

0.238 0.536
(0.129)

0.528
(0.099)

0.37 0.715
(0.16)

0.708
(0.119)

0.518

Zt 0.433
(0.277)

0.387
(0.158)

0.179 0.454
(0.127)

0.433
(0.097)

0.294 0.65
(0.166)

0.632
(0.109)

0.449

GH-ADF 0.715
(0.365)

0.57
(0.118)

0.328 0.548
(0.189)

0.49
(0.106)

0.363 0.602
(0.167)

0.553
(0.091)

0.433

GH-Zα 0.717
(0.469)

0.527
(0.14)

0.287 0.43
(0.20)

0.345
(0.112)

0.222 0.461
(0.177)

0.359
(0.087)

0.244

GH-Zt 0.70
(0.376)

0.539
(0.115)

0.315 0.514
(0.199)

0.431
(0.107)

0.306 0.569
(0.188)

0.488
(0.094)

0.368

MLS 0.508 0.517 0.684 0.494 0.466 0.572 0.375 0.361 0.489

inf Lc 0.329 0.391 0.583 0.388 0.393 0.508 0.302 0.316 0.461

α1 = β1 = 4, σ1 = 1

ADF 0.374
(0.305)

0.288
(0.208)

0.092 0.375
(0.183)

0.316
(0.123)

0.175 0.551
(0.222)

0.485
(0.142)

0.272

Zα 0.514
(0.306)

0.486
(0.16)

0.215 0.553
(0.15)

0.537
(0.111)

0.348 0.704
(0.204)

0.722
(0.141)

0.482

Zt 0.458
(0.306)

0.402
(0.177)

0.159 0.478
(0.153)

0.446
(0.108)

0.285 0.678
(0.214)

0.644
(0.13)

0.42

GH-ADF 0.73
(0.40)

0.561
(0.114)

0.32 0.574
(0.21)

0.488
(0.109)

0.344 0.634
(0.204)

0.547
(0.095)

0.386

GH-Zα 0.73
(0.497)

0.504
(0.132)

0.252 0.457
(0.24)

0.337
(0.198)

0.199 0.487
(0.234)

0.348
(0.098)

0.208

GH-Zt 0.731
(0.414)

0.527
(0.106)

0.29 0.543
(0.23)

0.43
(0.107)

0.285 0.608
(0.238)

0.484
(0.103)

0.32

MLS 0.517 0.51 0.692 0.491 0.352 0.582 0.368 0.354 0.515

inf Lc 0.34 0.393 0.594 0.387 0.394 0.518 0.306 0.321 0.491
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Table 11b - Change in slope and in the intercept (T = 200)

α1 = β1 = 4, σ1 = 0 p00 = p11 = 0.98 p00 = p11 = 0.95 p00 = 0.95, p11 = 0.9

ρ = 0 0.75 1 0 0.75 1 0 0.75 1

ADF 0.302
(0.157)

0.283
(0.141)

0.153 0.59
(0.116)

0.574
(0.102)

0.45 0.805
(0.125)

0.799
(0.112)

0.659

Zα 0.438
(0.135)

0.455
(0.132)

0.318 0.791
(0.098)

0.796
(0.095)

0.69 0.949
(0.106)

0.949
(0.101)

0.874

Zt 0.353
(0.153)

0.363
(0.138)

0.25 0.728
(0.096)

0.734
(0.09)

0.613 0.93
(0.112)

0.93
(0.104)

0.832

GH-ADF 0.48
(0.202)

0.448
(0.152)

0.29 0.556
(0.095)

0.54
(0.08)

0.457 0.719
(0.107)

0.708
(0.092)

0.644

GH-Zα 0.528
(0.202)

0.507
(0.124)

0.339 0.563
(0.097)

0.546
(0.081)

0.454 0.74
(0.103)

0.725
(0.086)

0.654

GH-Z t 0.507
(0.194)

0.468
(0.124)

0.325 0.586
(0.099)

0.563
(0.083)

0.473 0.769
(0.111)

0.754
(0.088)

0.695

MLS 0.70 0.653 0.752 0.488 0.459 0.551 0.322 0.32 0.433

inf Lc 0.534 0.532 0.581 0.604 0.592 0.651 0.527 0.522 0.621

α1 = β1 = 4, σ1 = 0.5

ADF 0.319
(0.183)

0.296
(0.158)

0.145 0.605
(0.139)

0.588
(0.116)

0.423 0.814
(0.17)

0.805
(0.142)

0.609

Zα 0.446
(0.162)

0.468
(0.156)

0.295 0.795
(0.122)

0.804
(0.118)

0.65 0.949
(0.159)

0.951
(0.143)

0.83

Zt 0.371
(0.162)

0.378
(0.146)

0.233 0.734
(0.136)

0.739
(0.12)

0.576 0.934
(0.163)

0.934
(0.142)

0.786

GH-ADF 0.503
(0.256)

0.452
(0.19)

0.266 0.568
(0.12)

0.548
(0.094)

0.423 0.734
(0.159)

0.713
(0.126)

0.606

GH-Zα 0.55
(0.237)

0.512
(0.142)

0.297 0.583
(0.131)

0.548
(0.096)

0.418 0.755
(0.156)

0.727
(0.112)

0.616

GH-Zt 0.536
(0.23)

0.478
(0.134)

0.295 0.572
(0.134)

0.572
(0.099)

0.448 0.782
(0.16)

0.761
(0.113)

0.659

MLS 0.712 0.635 0.761 0.495 0.461 0.571 0.323 0.312 0.474

inf Lc 0.549 0.532 0.579 0.609 0.596 0.664 0.529 0.528 0.662

α1 = β1 = 4, σ1 = 1

ADF 0.334
(0.209)

0.313
(0.181)

0.137 0.622
(0.162)

0.603
(0.127)

0.412 0.819
(0.203)

0.814
(0.16)

0.58

Zα 0.461
(0.184)

0.488
(0.177)

0.283 0.801
(0.15)

0.811
(0.132)

0.632 0.952
(0.194)

0.955
(0.17)

0.80

Zt 0.388
(0.185)

0.398
(0.165)

0.22 0.742
(0.162)

0.749
(0.137)

0.563 0.937
(0.206)

0.938
(0.171)

0.762

GH-ADF 0.527
(0.283)

0.469
(0.204)

0.244 0.589
(0.154)

0.555
(0.117)

0.405 0.747
(0.195)

0.724
(0.139)

0.586

GH-Zα 0.58
(0.287)

0.522
(0.168)

0.284 0.603
(0.167)

0.556
(0.115)

0.386 0.773
(0.222)

0.731
(0.147)

0.578

GH-Zt 0.572
(0.27)

0.49
(0.151)

0.278 0.62
(0.174)

0.579
(0.114)

0.42 0.801
(0.217)

0.767
(0.139)

0.628

MLS 0.725 0.613 0.765 0.509 0.449 0.59 0.332 0.305 0.486

inf Lc 0.57 0.542 0.58 0.617 0.594 0.665 0.533 0.532 0.68
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Table 12 - Cointegration Analysis

Tests ADF Zα Zt GH-ADF GH -Zα GH -Zt MLS

¡2.117 ¡10.597 ¡2.022 ¡3.20 ¡20.842 ¡3.217 7.901¤¤

Estimated β (standard error): 25.353 (0.695)

Regression standard error: 0.1514
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Table 13 - Markov switching cointegration results

Eq. (17) β0 β1 θ0 θ1 p00 p11

19.3636
(0.5795)

30.0884
(0.8339)

0.1466
(0.0192)

0.2995
(0.0635)

0.9798
(0.0376)

0.9843
(0.0422)

Eq. (18) µ0 µ1 ω0 ω1

¡0.0041
(0.0095)

0.0316
(0.0041)

0.1513
(0.0193)

0.0462
(0.0092)

Note: standard errors in brackets
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Table 14 - Simulated size and power, model (17)-(18) as the DGP

ρ ADF Zα Zt GH-ADF GH-Zα GH-Zt MLS

1 0.091 0.214 0.197 0.306 0.411 0.324 0.634

0 0.248
(0.176)

0.346
(0.159)

0.337
(0.16)

0.526
(0.206)

0.62
(0.301)

0.519
(0.215)

0.421

0.75 0.228
(0.15)

0.348
(0.058)

0.329
(0.08)

0.479
(0.124)

0.596
(0.162)

0.472
(0.117)

0.449

Note: Size-adjusted power in parentheses, based on corresponding critical values from ρ = 1
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Figure 1: Stock Prices and Dividends
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