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Abstract

This paper consists of an analytical review of the most relevant endogenous growth
models. The objective of this literature review is to discuss analytically and under-
stand, in an integrated form, the main mechanisms, identified in the existing literature,
that generate endogenous growth.

Endogenous or new growth theory has, so far, produced three main types of mecha-
nisms through which endogenous sustained positive economic growth is made possible.

One strategy brings a theory of innovations or R&D into the growth model. In
this type of model, endogenously determined technological progress is the engine of
economic growth.

The second mechanism delivers sustained positive growth through the introduction
of an endogenously determined accumulation of human capital. In this kind of model,
the source of long-run per-capita growth is human capital accumulation.

And a third way to obtain endogenous growth is simply to abandon one of the
standard assumptions of the neoclassical model, more precisely the assumption of
diminishing returns to capital.
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1 Introduction
This paper consists of an analytical review of the most relevant endogenous
growth models. The objective of this literature review is to discuss analytically
and understand, in an integrated form, the main mechanisms, identified in the
existing literature, that generate endogenous growth.

Classical economic growth theory states that sustained positive growth is
achieved whenever a non-declining marginal productivity of capital is attained.
In this sense, Solow’s [1956] neoclassical model demonstrates that, with labour
constant, technological progress can overcome the effects of diminishing returns
to capital and thus deliver sustained positive per-capita growth in the long-run,
with per-capita output growing at the same rate as the rate of technological
progress.
The rate of technological progress in Solow’s model is exogenous, which

means that the neoclassical model fails to explain how the key parameter of
a growth model - the economic growth rate - is generated. Consequently, in
Solow’s model, neither tastes nor policies are able to influence the long-run
per-capita growth rate of the economy.
Even though Solow [2000] argues that every area of economic theory has

to rest on some exogenous elements, he himself agrees that it is not entirely
satisfactory that the theory of economic growth regards economic growth as
exogenous.
These results have led to further research on how to endogenise the growth

rate. Such research gave rise to endogenous growth theory. Having started with
the well known papers of Paul Romer [1986] and Robert Lucas [1988], this new
growth theory is already vast and continues to be a very active research field.
As Solow [2000] describes, the endogenous or new growth theory has, so far,

produced three main types of mechanisms through which endogenous sustained
positive economic growth is made possible.
One strategy, first introduced by Romer [1987,1990], brings a theory of in-

novations or R&D into the growth model. In this type of model, endogenously
determined technological progress is the engine of economic growth.
The second mechanism, owed to Lucas [1988], delivers sustained positive

growth through the introduction of an endogenously determined accumulation
of human capital. That is, in this kind of model, the source of long-run per-
capita growth is human capital accumulation.
And a third, more direct, way to obtain endogenous growth is simply to

abandon one of the standard assumptions of the neoclassical model, more pre-
cisely the assumption of diminishing returns to capital. This is experimented
by Jones and Manuelli [1990].

In this paper, we propose to analyse these three alternative ways of gener-
ating endogenous growth.
We will attempt to dissect the above referred models, so that we can clearly

expose the roots of endogenously sustained positive long-run economic growth.
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With this study, we also aim at providing an integrated, comprehensive and
global view over endogenous growth theory.
Hence, in order to better compare the differences between the three main

types of endogenous growth models, we adapt the models under our analysis, so
that: (1) they all assume a constant population, and (2) they all have a common
production function, namely a Cobb-Douglas function with labour-augmenting
productivity.
We finalise the paper with a discussion of some limitations that characterise

the endogenous growth models analysed in our literature review.

This paper is organised as follows. After this Introduction, Section 2 dis-
cusses Solow’s [1956] neoclassical model, the starting point of all studies on eco-
nomic growth. Section 3 analyses Romer’s [1990] R&D or idea-based model and
the mechanism through which R&D generates endogenously sustained growth.
Section 4 discusses Lucas’ [1988] model, and investigates the ways in which
human capital accumulation leads to endogenous growth. Section 5 analyses
Jones and Manuelli’s [1990] and Barro and Sala-i-Martin’s [1995, Chp.5, page
172] models and the elimination of the diminishing returns to capital assump-
tion as their means to obtain sustained economic growth. The models analysed
are compared in Section 6. In Section 7, we analyse the models by Grossman
and Helpman [1991] and Aghion and Howitt [1992]. Section 8 is dedicated to
a discussion of some limitations of endogenous growth models. We close the
analytical literature review with some Final Remarks.

2 Solow’s Standard Model
Solow’s [1956] model is the starting point for almost all studies on growth.
Even models that depart fundamentally from Solow’s assumptions can be best
understood through comparison with the Solow model.
We discuss this exogenous growth model with the purpose of clearly exposing

the root of sustained positive per-capita growth.
Such positive sustained growth is achieved in any growth model that is able

to obtain a non-declining marginal productivity of capital, for constant labour.
In Solow’s model, a constant marginal productivity of capital is made possible
because of technological progress. Let us analyse how this is obtained:
The neoclassical model is set up for a closed economy with competitive

markets, identical rational agents and a production function for the single good
Yt of the form:

Yt = K
α
t (AtLt)

1−α , 0 < α < 1 (1)

Variable At represents the state of technology, Kt is the capital stock, and Lt
is the labour force, assumed to be equal to the economy’s population.
This production function assumes that technology is labour-augmenting.

Barro and Sala-i-Martin [1995, Chp.1] point out that technological progress
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must take the labour-augmenting form in the production function if the models
are to display a steady-state.
The optimising version of consumers behaviour is adopted here. The opti-

mising version means that the immortal representative consumer is dedicated to
planning optimally, that is, he/she wishes to maximise the present discounted
value of the utilities of his/her present and future consumption streams. That
is, preferences over consumption streams are described by:

Max

Z ∞
o

U(Ct)e
−ρtdt , U(Ct) =

C1−σt

1− σ
, (2)

where real consumption is a stream Ct of units of the single good produced, and
the discount rate ρ and the coefficient of risk aversion σ are both positive.
A second branch of growth literature assumes that consumers save a fixed

amount of output. Solow [2000] refers to this alternative form of consump-
tion/savings specification as the “behaviouristic” version of savings.
As analysed by Helpman [1992], both forms of saving lead to the same result

that sustained positive per-capita long-run growth is obtained if physical capital
can be accumulated forever without decreasing its marginal productivity. We
will further analyse Solow’s model, with the “behaviouristic” version of savings,
in Section 5.
Turning now to the form of the utility function adopted for most growth

models:

U(Ct) =
C1−σt

1− σ
, σ > 0

As Romer [1996, Chp. 2] analyses, this is a constant-relative-risk-aversion
(CRRA) utility function. The coefficient of relative risk aversion is:

−C
d2U(C)
dC2

dU(C)
dC

= σ,

which is the reciprocal of the elasticity of intertemporal substitution.
Romer [1996, Chp. 2] further analyses that when σ is close to zero, the

utility function is almost linear in Ct. And when σ is close to one, the utility
function approaches lnCt.
Additionally, he explains that if σ < 1, then C1−σt is increasing in Ct.

Whereas if σ > 1, then C1−σt is decreasing in Ct. So, dividing C
1−σ
t by 1 − σ

ensures that the marginal utility of consumption:

dU(C)

dC
= C−σ

is positive regardless of the value of σ.
Most growth models adopt this isoelastic utility function in order to obtain

a balanced growth path solution. They do this because, as pointed out by Barro
and Sala-i-Martin [1995], the result of a balanced growth path solution agrees
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with the empirical observation that many developed countries achieve per-capita
growth rates which are positive and trendless for long periods of time. Hence
it is believed that a useful growth theory should predict that the per-capita
growth rate approaches a constant in the long-run.
Continuing with the description of the standard growth model. Output

Yt is divided between aggregate consumption Ct and capital accumulation
·
Kt.

Capital depreciation is assumed to be zero, for simplicity. Hence, the closed
economy’s budget constraint is:

Yt = Ct +
·
Kt (3)

The resource allocation problem faced by the social planner of this econ-
omy consists in maximising utility 2 subject to the budget constraint 3. This
translates into maximising the current-value Hamiltonian H defined by:

Ht =
C1−σt − 1
1− σ

+ θt[K
α
t (AtLt)

1−α − Ct]

An optimal allocation must maximise the expression H at each date t, provided
the current-value of capital accumulation, θt, is chosen correctly. The solution
is obtained by imposing the following conditions:
First-Order Condition:

dHt
dCt

= 0 (4)

Co-State Condition:

dHt
dKt

= ρθt −
·
θt (5)

Transversality Condition:

lim
t→∞e

−ρtθtKt = 0 (6)

As explained by Lucas [1988], the first-order condition 4 says that at every
instant of time the shadow price of investment θt must be equal to the marginal
utility of consumption. It means that at each instant of time, output will be
best allocated between consumption and investment when the marginal gain
from a unit increase in consumption is just equal to the marginal loss of a unit
decrease in investment.
The co-state equation 5 is the Fisher equation that must also hold at every

moment of time. It says that the sum of the marginal product of capital and
the capital gain per unit of capital must equal the pure rate of time preference.
The transversality condition 6 means that the value of capital must tend to

zero. It decides which of the one-parameter family of solutions given by 4 and
5 for one initial condition K(0) = K0, is the right one.
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Now, conditions 4 and 5 are developed:

dH

dC
= 0

⇔ C−σ = θ

⇔
·
C

C
= − 1

σ

·
θ

θ

dH

dK
= ρθ −

·
θ

⇔ θαKα−1(AL)1−α = ρθ −
·
θ

⇔
·
θ

θ
= ρ− αKα−1(AL)1−α

The problem is solved for a particular solution to the model - the balanced
growth path - which is the solution (Kt, θt, Ct) such that the growth rates of
these three variables are constant. This solution is constructed using equations
3, 4 and 5.
So, equations 4 and 5 together give:

gC =
1

σ
[αKα−1(AL)1−α − ρ] (7)

Since σ and ρ are constants, equation 7 says that a balanced growth path with
a positive growth rate requires a constant marginal productivity of capital,
αKα−1(AL)1−α, above the discount rate ρ. That is:

·
gC = 0⇒

·
[αKα−1(AL)1−α] = 0 (8)

⇔ (α− 1)gK + (1− α)(gA + gL) = 0,

We now consider two cases:

2.1 Case 1: Solow’s ModelWithout Technological Progress

Assume first that Lt and At are constant, that is, gL = 0 and gA = 0. In this
case, condition 8 says that:

(α− 1)gK + (1− α)(gA + gL) = 0⇔ gK = 0,

that is, with gA = 0 and gL = 0, the balanced growth path solution has gK = 0.
Then, log-differentiation of the production function 1 gives us the growth

rate of output:

Y = Kα(AL)1−α

⇒
gY = αgK + (1− α)(gA + gL) = 0
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Finally, equation 7 can be rewritten to give:

Y

K
=
1

α

dY

dK
=
C +

·
K

K
=

σgC + ρ

α
(9)

With gK and gL equal to zero, equation 9 implies that the growth rate of
consumption must also equal zero, because σgc+ρ

α is a constant.
For a constant population, per-capita variables grow at the same rate as

their aggregate counterparts, so the balanced growth path solution of Solow’s
model for A constant and L constant is:

gC = gY = gK = gc = gy = gk = 0 (10)

This economy displays zero growth in the long-run because of diminishing
returns to capital. In fact, the marginal productivity of capital is:

dY

dK
= αKα−1(AL)1−α =

α(AL)1−α

K1−α ,

which decreases as K increases, because the numerator is constant whilst the
denominator grows.
Lucas [1988] writes that solving this optimisation problem for its transitional

dynamics would show that accumulation of capital K will eventually drive its
marginal productivity down until it equals ρ, which means that the economy
reaches and stays in a steady-state level of K, K∗, for which the economy does
not grow.

2.2 Case 2: Solow’s Model With Technological Progress

Let us now analyse the case in which technology grows at a positive rate gA > 0.
Population is held constant, gL = 0. In this case, condition 8 implies:

·
[αKα−1(AL)1−α] = 0

⇔
(α− 1)gK + (1− α)(gA + gL) = 0

⇔
gK = gA,

and log-differentiation of the production function 1 gives:

gY = αgK + (1− α)(gA + gL) = gA

Equation 9 then gives the growth rate of consumption:

C +
·
K

K
=

C

K
+

·
K

K
= constant (11)

⇒ gC = gK = gA
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As L is constant, per-capita variables grow at the same rate as the aggregate
variables, that is:

gc = gk = gy = gA

Another important feature of this solution is that when the economy reaches
the balanced growth path, it will be saving and investing a constant fraction of
its income, which is:

I

Y
=

·
K

Y
=
gK
Y
K

=
αg
dY
dK

=
αg

σg + ρ
(12)

Concluding, when gA is positive output per-capita grows at a positive con-
stant rate in the long-run. What is happening here is that, because there is
technological progress, capital can grow in the long-run without decreasing its
marginal productivity. That is, technological progress overcomes diminishing re-
turns to capital. The marginal productivity of capital can then be permanently
sustained (as a constant) above ρ, allowing for sustained positive per-capita
growth. Let us see this:

dY

dK
= αKα−1(AL)1−α =

αA1−αL1−α

K1−α

For L constant, with gK = gA, the marginal productivity of K is held con-
stant. This delivers sustained positive per-capita growth in the long-run in the
neoclassical growth model.
Barro and Sala-i-Martin [1995, Chp. 2, pages 72-80], rewrite Solow’s model

in terms of consumption, capital and output per effective-labour
¡
C
AL ,

K
AL ,

Y
AL

¢
,

and analyse the transitional dynamics towards the steady-state of the model,
with the use of phase diagrams. They show that the system exhibits saddle-path
stability.

This study of Solow’s model allows us to conclude that sustained positive per-
capita growth in the long-run can be achieved through sustained technological
progress.
In Solow’s model, the rate of technological progress is exogenously provided,

and therefore not explained by the model. Hence this model is called an exoge-
nous growth model. For this reason, in this neoclassical model, the preference
parameters σ and ρ do not influence the equilibrium growth rate. Neither does
the technological parameter α. These parameters do influence the steady-state
value of the investment-output ratio, but not the equilibrium growth rate. In
fact, the only parameter that affects the growth rate is gA, which is exogenous
to the model.
In order to better compare Solow’s model with Romer’s [1990] model, which

is analysed next, we represent, in Figure 1, Solow’s economy in the space (r, g).
In the absence of capital depreciation, the interest rate is equal to the

marginal productivity of capital. So curve P (Preferences) represents the equa-
tion 7 and describes the consumption side in terms of balanced growth paths
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Figure 1:

expressed in terms of pairs of (r, g). And curve T (Technology) describes the
production side in terms of balanced growth paths given by pairs of (r, g)1. As
we can see, the equilibrium growth rate, that results from the crossing of the
two curves, is given by the exogenous variable gA.
Notice, however, that as Solow [2000] points out, to treat a parameter as

exogenous is not the same thing as to treat it as a permanent constant or as
something inexplicable.
We can, in fact, advance reasons for an increase in gA, especially a posteriori.

But whatever reasons we come up with, they cannot be explained within Solow’s
model. That is, the exogenous growth model cannot itself explain whether nor
how tastes or policies have an impact on the long-run per-capita growth rate.
This limitation of Solow’s neoclassical model has led to further investigation

into the fundamental questions of growth. In particular, growth theorists have
tried to endogenise the engine of growth, that is, to have the engine of growth
determined within the model.
From their attempts to create a systematic and generally acceptable theory,

these research activities gave rise to the endogenous or new growth theory.
One group of endogenous growth theorists believe that technological progress

is the driving force of growth, and in this sense they agree with Solow’s result.
But whereas in the neoclassical model technological progress is exogenous to
the model, the new growth models have it determined within the model. In this
group of endogenous growth models, technological progress arises as a result

1The curves are named Preferences and Technology after Rivera-Batiz and Romer [1991].

9



of research and development (R&D) activities. Romer [1990] provides the first
fully-articulated growth model based on R&D, and this branch of the literature
also includes the important initial contributions by Grossman and Helpman
[1991] and Aghion and Howitt [1992]. The models that fall into this category
are called R&D-based or idea-based growth models.
The second main stream of endogenous growth models were built under the

belief that the engine of growth is human capital accumulation. This branch
of the literature was fathered by Lucas [1988], with further contributions by
Becker, Murphy and Tamura [1990] and Stokey [1991]. In our review, we name
these kind of models as human capital-based growth models.
Endogenous growth literature also includes a third category of models that

produce endogenous growth via the straightforward elimination, from the pro-
duction function, of the assumption of diminishing returns to physical capital.
Jones and Manuelli’s [1990] and King and Rebelo’s [1990] models are the out-
standing examples of such models.
This review continues with the analyses of the models that classically repre-

sent these three groups of endogenous growth models.

3 R&D-Based Growth Models
Until the second half of the eighties, attempts to explain technological progress
were not very successful. The inclusion of a theory of technological progress in
the neoclassical framework is not an easy task, because the standard competitive
assumptions cannot be maintained. In fact, the returns to scale of the output
production function Y = Kα (AL)

1−α tend to be increasing if technology A is
a factor of production..
Previous growth models have avoided this difficulty in many ways. Shell

[1967] treats A as a public input that is provided by the government and there-
fore receives no compensation. Arrow [1962] and Sheshinski [1967] assume that
ideas, A, are unintended by-products of production or investment, a mechanism
described as learning-by-doing. And each persons’ discoveries automatically
spillover to the whole economy, a process known as knowledge spillovers2 .
As discussed by Helpman [1992], these models do not capture the deliberate

efforts to develop new products and technologies. And the impressive develop-
ments in consumer electronics, computers and pharmaceuticals are good exam-
ples of the rising importance of deliberate R&D efforts to develop new products
and technologies in today’s industrial economies.
As the competitive framework breaks down when discoveries depend on in-

tentional R&D effort, and firms can enjoy the exclusivity of their inventions
through the use of patent rights, a decentralised theory of technological progress
requires basic changes to the neoclassical model in order to incorporate imper-
fect competition. This was first done by Romer [1987, 1990].

2Romer [1990] notes that in Arrow’s model, the nonrival input produced through learning
must be completely nonexcludable, otherwise Dasgupta and Stiglitz [1988] show that the
decentralised equilibrium with many firms would not be sustainable.
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Romer [1987, 1990] proposed to model profit-seeking firms’ R&D efforts. He
followed Ethier [1982] in reinterpreting the utility function used by Dixit and
Stiglitz [1977] as a production function, to capture a preference for variety. In
this reinterpretation, final output is an increasing function of the total number
of differentiated capital goods used by a final goods producer.
A key feature of Romer’s model is the introduction of imperfect competition

in the capital goods sector, which makes it possible to model firms’ behaviour as
engaging in deliberate research activities and thereby being compensated with
monopoly rents for a successful innovation.
By introducing profit-seeking research behaviour in the growth model, Romer

generates an explanation for technological progress inside the model. That is,
sustained positive per-capita growth, possible because of technological progress,
can now be explained within the model. This fact makes Romer’s model an en-
dogenous growth model. We now analyse Romer’s [1990] model, in the version
presented by Jones [1995] and Aghion and Howitt [1998, Chp.1].
On the preferences side of Romer’s decentralised model, homogeneous con-

sumers maximise, subject to a budget constraint, the discounted value of their
utility:

Max

Z ∞
0

e−ρtU(Ct)dt , U(Ct) =
C1−σt

1− σ
,

where variable Ct is aggregate consumption in period t, ρ is the rate of time
preference, and 1

σ is the elasticity of substitution between consumption at two
periods of time.
The representative consumer facing a constant interest rate r, chooses to

have consumption growing at the constant rate gC given by the Euler equation3:

gC =

·
C

C
=
1

σ
(r − ρ) (13)

On the production side, the model can be understood as having three sectors.
The final good sector, the capital goods sector and the R&D sector.
The final good Y is produced using as inputs labour devoted to final output,

LY and a number A of differentiated durable capital goods, i, each produced
in quantity x(i). All capital goods have additively separable effects on output4.
The production function is then:

Yt = L
1−α
Y t

Z At

0

xt(i)
αdi (14)

For A constant, the production function displays constant returns to scale in
LY and x(i), and diminishing returns in x(i), for LY fixed. But in this model
A is productive as well. Therefore, technological growth, that is, continuous

3 In Section 8, we derive the Euler Equation.
4 See Grossman and Helpman [1991, Ch.5] for an alternative description.
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increases in A, avoids the tendency for diminishing returns to increases in x(i).
This delivers endogenous growth, as will be shown later.
Capital accumulation is given by:

·
Kt = Yt − Ct

Assuming that it takes one unit of foregone consumption to produce one
unit of any type of capital good, K is related to the capital goods according to
the following rule:

Kt =

Z At

0

xt(i)di

The process for accumulation of new designs, that is, the production function
of new designs is defined as:

·
At = δLAtAt, (15)

where LA is total labour employed in research.
Variables LA and LY are related by the constraint:

LAt + LY t = Lt,

so that any person can devote labour either to the final good sector or to the
research sector.
According to specification 15, all researchers have access to the total stock

of knowledge A (equal to the total number of designs). In this model, knowl-
edge enters production in two distinct ways. Firstly, a new design corresponds
to a new capital good which is used to produce final goods. Additionally, a
new design increases the total stock of knowledge and therefore increases the
productivity of labour in the research sector.
The owner of a design has property rights over the production of the re-

spective capital good but not over the use of the created design in the research
sector. That is, knowledge is a nonrival good that is partially excludable and
privately provided.
This equation relies upon important assumptions. Firstly, it assumes that

devoting more labour to R&D leads to a higher growth rate of A.
Secondly, the higher the total stock of A, the higher the marginal produc-

tivity of a researcher.
The third very important assumption is that the output of designs is linear

in A. This is the assumption that makes possible the existence of a balanced
growth path, that is, an equilibrium with a constant growth rate for A, K, Y ,
and C.
Continuing with the description of the model. Being in a perfect competition

environment, final good producers rent each capital good according to the profit
maximisation rule:

dYt
dxt(i)

= Rt(i),

12



where R(i) is the rental price of each capital good.
This gives the inverse demand curve faced by each capital good producer:

Rt(i) = αL1−αY t xt(i)
α−1 (16)

With given values of r and LY , each capital good producer, who has already
incurred the fixed cost investment in a design, PA, and has the patent on it, will
maximise its revenue minus variable cost at every date:

Max πt(i) = Rt(i)xt(i)− rtxt(i)
With a constant marginal cost and a constant elasticity demand curve, this
monopolistic competitor solves his problem by charging a monopoly price which
is a markup over marginal cost. The markup is determined by the elasticity of
demand5:

Max π(i) = αL1−αY x(i)α − rx(i)
⇒

dπ(i)

dx(i)
= α2L1−αY x(i)α−1 − r = 0
⇔

R(i) =
r

α

The idea is that a firm incurs a fixed cost when it produces a new capital
good. It recovers this cost by selling its good for a price R(i) that is higher than
its constant marginal cost. The fixed cost is the defining characteristic of this
technology.
The decision to produce a new capital good depends on the comparison

between the discounted stream of net revenues that the patent on this good will
bring in the future, and the cost PA of the initial investment in a design. The
key feature of R&D costs is that they have to be paid up front, before profits
can be earned. This time structure introduces natural dynamics in the model.
The market for designs is competitive, so at every date t the price for designs

will be equalised to the present value of the future revenues that a monopolist
can extract. This means that capital good producers earn zero profits in a
present value sense. The dynamic zero-profit/free-entry condition is then:

PAt =

Z +∞

t

e−r(τ−t)πτ (i)dτ (17)

⇔
·
PAt = rtPAt − πt(i),

assuming that there are no bubbles.
Equation 17 can be presented as:

rtPAt = πt(i) +
·
PAt,

5The elasticity of demand is α− 1.
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and interpreted in the following way: Firms can choose between putting the
monetary value PAt in the bank and earn interest on this deposit, rtPAt, or
buying a patent for the same value and earn the returns of producing the dif-

ferentiated good, πt(i), plus the capital gain/loss of owning that patent,
·
PAt.

It is the Fisher equation of this model.
Next, the model is solved for its balanced growth path, the equilibrium for

which variables A, K, C and Y grow at constant exponential rates.
According to the Euler equation 13, in a balanced growth path, the interest

rate must be constant. Consequently so is R(i).
The model is symmetric, that is, all producers have the same technological

characteristics and face the same market conditions and consequently will choose
the same equilibrium. This implies that R(i) = R = R and x(i) = x = x. Then,
we can rewrite the expressions for Rt and xt:

Rt = αL1−αY t xt
α−1,

and, equivalently:

xt = LY t

·
α2

r

¸ 1
1−α

,

from which we can observe that in a balanced growth path, with LY constant
(required for a balanced growth path, as will be explained below), x is also
constant.
Since all capital good producers produce in the same quantity, total physical

capital is equal to:

Kt =

Z At

0

xt(i)di = Atxt,

and the production function can be rewritten as:

Yt = L
1−α
Y t Atx

α
t

With LY and x constant, it is clear from log-differentiation of the two equations
above that K and Y grow at the same rate as A.
Now, rewriting the production function so that K appears distinctively, we

have:

Y = L1−αY Axα

⇔
Y = L1−αY (Ax)αA1−α

⇔
Y = Kα(LYA)

1−α,

which is similar to Solow’s production function.
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The marginal productivity of capital is:

dY

dK
=

αL1−αY A1−α

K1−α

We can observe that, for LY constant, with physical capital K growing at the
same rate as technology A, the marginal productivity of capital is held con-
stant. Hence this model delivers sustained per-capita growth, in the same way
as that predicted by Solow’s model. That is, technological progress overcomes
diminishing returns to capital. The root of sustained positive growth in Romer’s
model has thus been identified.
Now, whereas in Solow’s model, the growth rate of A is exogenous to the

model, in Romer’s model, this growth rate is determined within the model. Let
us analyse how this growth rate is endogenously determined:
The engine of growth is given by equation 15, repeated here:

·
At = δLAtAt

It implies that:

gA = δLAt,

that is, technological progress, gA, depends on LA, the number of people that
choose to work in the research sector. Equation 15 makes it obvious that a
balanced growth path solution, that is a solution with a constant growth rate,
requires that LA remains constant. Thus the existence of a balanced growth
equilibrium requires that prices and wages are such that LY and LA remain
constant as A, K, Y and C grow at a constant exponential rate.
The allocation of workers between the final output and research sectors obeys

the labour market equilibrium condition that remuneration of labour must be
the same in both sectors.
In the final goods sector, the wage paid to LY is:

wY t =
dYt
dLY t

= (1− α)L−αY t Atx
α
t ,

and in the research sector, remuneration is:

wAt =
d
·
At

dLAt
PAt = δAtPAt

Equality of the two implies that:

PAt =
(1− α)

δ
L−αY t x

α
t (18)

Log-differentiation of equation 18 shows that in a balanced growth path, as

LY and x are both constant, PA is also constant. Hence, with
·
PA = 0, the
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zero-profit condition 17 becomes:

0 = rPA − π (19)

⇔
r =

π

PA

Next, recalling equation 16, and the markup rule R(i) = r
α , we can rewrite the

profits expression as:

π = Rx− rx (20)

= (1− α)αL1−αY xα,

and, replacing expressions 20 and 18 in equation 19, we get:

r =
π

PA
=
(1− α)αL1−αY xα

(1−α)
δ L−αY xα

⇔ r = δαLY ,

which is equivalent to:

LY =
r

δα
(21)

Then, it follows that the growth rate of A is:

gA = δLA (22)

⇔
gA = δ(L− LY )

⇔
gA = δL− r

α

As explained before, output and physical capital grow at the same rate
as A. And, as shown below, the capital accumulation equation implies that
consumption also grows at the same rate as Y and K. That is:

·
K = Y − C ⇒

·
K

K
=
Y

K
− C
K

A constant gK implies that:

d

µ ·
K
K

¶
dt

= 0⇒
·µ
Y

K

¶
=

·µ
C

K

¶
which, because gY = gK , implies that:

·µ
C

C

¶
=

·µ
K

K

¶
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With a constant population, this growth rate is the same as the per-capita
growth rate:

gc = gy = gk = gA = g,

and it is:

g = δL− r

α
(23)

We now head for the final step in the resolution of this decentralised econ-
omy’s problem, that is, the determination of the general equilibrium solution.
Equation 23 represents pairs (r, g) of balanced growth paths on the pro-

duction side. Following Rivera-Batiz and Romer [1991], it will be named the
Technology curve. It entails a negative relationship between the interest rate
and the growth rate. To understand this relationship, note that the return to
investing labour in research is a stream of net revenues that a design generates
in the future. Its opportunity cost is the wage rate received in the final goods
sector. If the interest rate rises, the present discounted value of the stream
of revenues will be lower than before and therefore labour will shift from the
research sector into the final goods sector, thus decreasing the growth rate.
The Euler equation 13 represents pairs (r, g) of balanced growth paths on

the consumers side. It postulates the familiar positive relationship between the
interest rate, r, and the growth rate, g, and, following Rivera-Batiz and Romer
[1991], it will be called the Preferences curve.
The general equilibrium balanced growth path for this economy is obtained

where the two curves intersect, as shown in Figure 2.
Rivera-Batiz and Romer [1991] point out that a parameter restriction is

necessary for the growth rate not to be greater than the interest rate. Because,
otherwise, present values would not be finite. This restriction is always met if
σ ≥ 1, which means that the Preferences curve lies on or above the 45oline. If
σ < 1, then the Technology curve cannot lie too far up and to the right.
The equilibrium growth rate is the solution to the system of two equations:

23 and 13, and two unknowns: r, g :½
g = δL− r

α
g = 1

σ (r − ρ)

which is:

g =
αδL− ρ

α+ σ
(24)

Arnold [2000] provides a complete characterisation of the dynamics of Romer’s
[1990] model in the neighbourhood of its steady-state. He shows that the equi-
librium of the model can be analysed in terms of a system of three differential
equations in the three variables χ = C

K , Z =
Y
K , and LY . The steady-state of

this system corresponds to the balanced growth path of Romer’s model. Arnold
[2000] shows that there is a unique and monotonic growth path converging to
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Figure 2:

the steady-state, which is a saddle point. The model does not have local inde-
terminacy, instability nor cycles. Arnold also demonstrates that the initial value
of AK uniquely determines the starting point on the saddle-path of the system.
Equation 24 shows that, as opposed to the neoclassical model, in Romer’s

model the equilibrium growth rate is influenced by the preference parameters σ
and ρ. In a figure such as Figure 2, if either of these two parameters decrease,
the Preferences curve shifts to the left, leading to a new equilibrium with a
higher growth rate.
The equilibrium growth rate also depends positively on the technology pa-

rameter α, the capital’s share in total income.
Additionally, economic growth is proportional to the size of the labour force,

L, equal to total population. In a figure such as Figure 2, a rise in L shifts the
Technology curve to the right, leading to a new balanced growth path with a
higher growth rate and a higher interest rate. This proportionality between the
size of the population and the growth rate is called the scale-effects property,
which characterises virtually all the first-generation of R&D-based models like
Romer’s [1990], Grossman-Helpman’s [1991] and Aghion-Howitt’s [1992].
The origin of this scale-effects prediction is the R&D equation 15, which

implies that technological growth is proportional to the level of labour resources
allocated to research, LA. And, with a constant share of labour dedicated to
research, this implies that economic growth is proportional to the size of the
economy’s population.
For Rivera-Batiz and Romer [1991], this dependence on scale is crucial for

the analysis of the effects of trade and economic integration on growth. The
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effect of integration of two identical economies is straightforward to show with
equation 24: Integration doubles the size of the economy, into 2L, increasing
the equilibrium growth rate and interest rate.
This scale-effects prediction of the first-generation of R&D-based models is

at odds with empirical observation, as was first highlighted by Jones [1995], and
a new literature has been developing around the objective of eliminating the
scale-effects prediction from R&D-based models6 .
The equilibrium growth rate expressed in equation 24 is not optimal. There

are two sources for this non-optimality: The first source of non-optimality is the
fact that capital good producers charge a price that is higher than the marginal
cost. Recall the markup rule:

R =
r

α
,

and recall also expression 16:

R = αL1−αY xα−1

The marginal productivity of capital is:

dY

dK
=

αL1−αY A1−α

K1−α =
αL1−αY A1−α

(Ax)1−α
⇔

dY

dK
= αL1−αY xα−1

So, it follows that:

r = αR = α
dY

dK
,

that is, capital is remunerated by less than its marginal productivity. This
identifies one source of the non-optimality of Romer’s balanced growth path.
The second reason for non-optimality of the decentralised economy is the

presence of the externality generated by the fact that the individual decision to
do R&D does not take into account the fact that this research will benefit other
R&D activities, via the creation of a larger knowledge stock.
The solution to the Social Planner’s version of this model, which confirms the

non-optimality of Romer’s decentralised solution, is presented in the Appendix
to this paper.

Two other major references in the literature on R&D-based growth models
are the models developed by Grossman and Helpman [1991] and Aghion and
Howitt [1992,1998].
Grossman and Helpman’s [1991] model differs from Romer’s model in two

fundamental specifications. Firstly, instead of the presence of differentiated

6Jones [1999] reviews the existing new literature on R&D-based growth models without
the scale-effects prediction.
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capital goods in the production function, the differentiated goods are final goods
that enter the utility function of consumers.
Secondly, production of one unit of each intermediate good requires one unit

of labour. Therefore physical capital, K, is not linked to Ax, and the solution
arises directly from the equilibrium conditions in the labour market. In this
model, investment in physical capital is not the source of economic growth.
Investment consists, instead, of developing new products.
Aghion and Howitt [1992, 1998], bring into the R&D-based growth theory el-

ements of: (1) chance; (2) Shumpeter’s idea of “creative destruction”, according
to which new designs render the existing ones obsolete, giving monopoly prof-
its a temporary character; and (3) endogenous cycles caused by the innovation
mechanism.
In Grossman and Helpman’s [1991] and Aghion and Howitt’s [1992, 1998]

models, economic growth is sustained at a positive level in the long-run because
of investment in R&D activities and the accumulation of knowledge. These
models are endogenous growth models because they explain what determines
the accumulation of knowledge, and they produce a sustained accumulation of
knowledge, at a constant exponential rate.
However, these two models do not contemplate physical capital accumula-

tion. Hence sustained growth does not require a non-declining marginal pro-
ductivity of capital. The exposition of these two models in this Section would,
therefore, break the line of thought adopted for this literature review which
aims to analyse the three mechanisms to endogenously obtain a non-declining
marginal productivity of capital and thus produce sustained positive long-run
growth.
Nevertheless, as they constitute two important contributions to endogenous

growth theory, we present their analyses in Section 7, after the discussion of the
three mechanisms for generating a constant marginal productivity of capital.
Hence, having completed our analytical study of the first R&D-based growth

model, we move on to the second group of endogenous growth models, namely
those that produce sustained economic long-run per-capita growth through en-
dogenously determined human capital accumulation.

4 Human Capital-Based Growth Models
Human capital-based growth models have human capital accumulation, rather
than technological progress, as the source of endogenous growth. We now turn
to Lucas’ [1988] model, which is the first model of this kind.
Lucas [1988] builds on Solow’s model and considers human capital accumu-

lation as the engine of growth. He introduces a specification for human capital
accumulation, which allows for endogenous growth. Its discussion follows:
In this model there are L workers in total, with skill level h ranging from

zero to infinity.
Contrary to the original Lucas’ model, in this analysis we assume that pop-

ulation is constant in order to highlight the role of human capital accumulation
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in the economic growth process.
A worker with skill level h, and endowed with one unit of time per unit of

time, devotes the fraction u(h) of his non-leisure time to current production, and
the remaining (1− u(h)) to human capital accumulation. The model implicitly
assumes that the amount of leisure is fixed exogenously7.
The effective workforce in production is then Le =

R∞
0
u(h)L(h)hdh. Output

is Y = F (K,Le).
Assuming that all workers are identical, if they have the skill level h and

choose time allocation u, then Le = uhL.
The production function that we assume for this literature review is:

Yt = K
α
t (AL

e
t )
1−α, (25)

where the technology parameter A and population L are assumed constant8.
The capital accumulation equation is, as usual:

·
Kt = Yt − Ct (26)

Regarding the specification for the accumulation of human capital, Lucas
[1988] adopts Uzawa’s [1965] linear function:

·
ht = htδ(1− ut), (27)

where parameter δ represents the efficiency of the learning activities.
This specification assumes that the accumulation of human capital is inten-

sive in human capital. Physical capital is not used as an input in this production
function of human capital.
Specification 27 allows for sustained per-capita growth at a constant rate,

because it does not display diminishing returns. We can already observe that a
balanced growth path solution requires a constant u:

gh =

·
ht
ht
= δ(1− ut)

Now, the representative agent’s problem is solved by choosing Ct and ut
that maximise utility 2 subject to restrictions 26 and 27. The current-value
Hamiltonian H is:

Ht =
C1−σt

1− σ
+ θ1t[K

α
t (AtuthtLt)

1−α − Ct] + θ2t[htδ(1− ut)]
7 See Solow [2000] for an analysis of Lucas’s model with leisure.
8The production function of Lucas’s model is Yt = AtKα

t L
e
t
1−αhγat , where the term hγat

captures the external effects of human capital. We choose to use specification 25 so that we
can work with a similar production function as that of Solow and Romer’s models, in order to
clearly expose the differences in the way each model overcomes diminishing returns to physical
capital.
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The first-order conditions are:

dHt
dCt

= 0 (28)

dHt
dut

= 0 (29)

And the co-state equations are:

dHt
dKt

= ρθ1t −
·
θ1t (30)

dHt
dht

= ρθ2t −
·
θ2t (31)

Developing the four equations:
Equation 28:

dH

dC
= 0⇔
⇔ C−σ = θ1

⇔
·
C

C
= − 1

σ

·
θ1
θ1

Equation 29:

dH

du
= 0⇔
⇔ θ1(1− α)AhLKα(AuhL)−α = θ2δh

Equation 30:

dH

dK
= ρθ1 −

·
θ1 ⇔

⇔
·
θ1
θ1
= ρ− αKα−1(AuhL)1−α

Equation 31:

dH

dh
= ρθ2 −

·
θ2 ⇔

⇔ θ1(1− α)AuLKα(AuhL)−α + θ2δ(1− u) = ρθ2 −
·
θ2

The model is solved for its balanced growth path, the solution for which
C,K and h grow at constant rates, the prices θ1and θ2 decline at constant rates
and the time allocation variable u is constant:
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Firstly, as in the resolution of Solow’s model, a constant gc requires a con-
stant marginal productivity of physical capital. Equations 28 and 30 give:

gc = − 1
σ

·
θ1
θ1
=
1

σ

£
αKα−1(AuhL)1−α − ρ

¤
,

where the marginal productivity of capital is:

dY

dK
= αKα−1(AuhL)1−α

With A,L and u constant, a constant marginal productivity of capital implies
that:

·¡
dY
dK

¢
dY
dK

= 0⇒ (α− 1)gK + (1− α)gh = 0⇔ (32)

⇔ gK = gh

Then, log-differentiation of the production function gives the growth rate of
output:

Y = Kα(AuhL)1−α (33)

⇒
gY = αgK + (1− α)gh = gh

Then, and as in Solow’s and Romer’s models, the physical capital accumulation
equation:

·
K = Y − C

ensures that consumption grows at the same rate as output and physical capital.
That is:

gc = gy = gk = gh,

where variables have been replaced by their per-capita counterparts, because L
is constant.
Concluding, in this model, sustained per-capita growth is obtained through

sustained human capital accumulation. That is, Lucas’ model overcomes dimin-
ishing returns to physical capital through the accumulation of human capital.
Hence, physical capital can be accumulated without decreasing its marginal pro-
ductivity because human capital is also growing at the same rate as physical
capital.
We can see this more clearly by rewriting the expression for the marginal

productivity of capital:

dY

dK
= αKα−1(AuhL)1−α =

α(AuL)1−αh1−α

K1−α ,
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from which we observe that the marginal productivity of capital remains con-
stant because physical capital K and human capital h grow at the same rate.
The root of sustained per-capita economic growth in Lucas’ model has thus

been identified.
Now we only need to analyse how human capital growth is determined within

the model, that is, how this model gains the definition of an endogenous growth
model.
The next step is, then, to determine the engine of growth, gh:
Equation 27 says that:

gh = δ(1− u) (34)

Then, log-differentiation of equation 29 gives:

θ1(1− α)AhLKα(AuhL)−α = θ2δh (35)

⇔
·
θ1
θ1
+

·
h

h
+ α

·
K

K
− α

·
h

h
=

·
θ2
θ2
+

·
h

h
⇔

·
θ1
θ1

=

·
θ2
θ2

Next look at equation 29, repeated below:

θ1(1− α)AhLKα(AuhL)−α = θ2δh,

and at equation 31, repeated below:

θ1(1− α)AuLKα(AuhL)−α + θ2δ(1− u) = ρθ2 −
·
θ2

The first terms of these two equations have much in common. In fact we have
that:

θ1(1− α)AuLKα(AuhL)−α = θ1(1− α)AhLKα(AuhL)−α × u
h

So these two equations can be combined together to give:

θ2δhu

h
+ θ2δ − uθ2δ = ρθ2 −

·
θ2 (36)

⇔
·
θ2
θ2

= ρ− δ

Finally, using equations 35 and 36 to substitute for
·
θ2
θ2
gives the rate of human

capital accumulation:

gh = gk = gc = g = − 1
σ

·
θ1
θ1
=
1

σ
(δ − ρ), (37)
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This endogenous growth model predicts, then, that economic growth in-
creases with the effectiveness of investment in human capital, δ. It also predicts
that economic growth depends negatively on the preference parameters, ρ and
σ.
Benhabib and Perli [1994] and Xie [1994] investigate the transitional dynam-

ics of Lucas’ [1988] model off its steady-state. Barro and Sala-i-Martin [1995,
Chp. 5, pages 183-194] also analyse the transitional dynamics of Lucas’ model9 .
They show that the equilibrium of the model can be analysed in terms of a
system of three differential equations in three variables: χ = C

K , W = K
H , and

u. The steady-state of this system corresponds to the balanced growth path of
Lucas’ economy.
In order to study the transitional dynamics, Barro and Sala-i-Martin replace

variableW with variable Z which is the gross average product ofK. They show,
with a phase diagram, that the system:( ·

χ = 0
·
Z = 0

is saddle-path stable, for σ > α. They then analyse the behaviour of u through
an adjacent phase diagram.

Other human capital-based models include Becker, Murphy and Tamura
[1990], and Rebelo [1991]. Like Lucas [1988], these models assume different
technologies for production of the final good and for human capital accumula-
tion. More precisely, they assume that the production function for human cap-
ital is more intensive in human capital than the production function of physical
capital. Lucas’ model assumes the extreme case that the production of human
capital involves no physical capital at all.
Next, we analyse the third group of endogenous growth models, which pro-

duce endogenous growth via the elimination of the assumption of diminishing
returns to capital.

5 Models that Eliminate the Diminishing Re-
turns to Capital Assumption

As discussed in Section 2, Solow’s [1956] basic proposition is that without tech-
nological progress, the effects of diminishing returns to capital will eventually
drive the per-capita growth rate to zero.
The building block of this neoclassical model is an aggregate production func-

tion exhibiting constant returns to scale and diminishing marginal productivity
in each of the inputs, and satisfying the Inada conditions (described below).

9Barro and Sala-i-Martin [1995] work with Lucas’s original model. However, performing
the same transitional dynamics analysis to our Luca’s model, will give us similar results in
terms of the model’s dynamics around its steady-state.
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Consider the aggregate production function adopted in this literature review:

Y = Kα(AL)1−α , 0 < α < 1,

where A and L are constant.
In this model, because there is no technological change (nor human capital

accumulation), the engine of growth is physical capital accumulation.
Then:

dY

dK
=

α(AL)1−α

K1−α

and

d2Y

dK2
=
−(1− α)α(AL)1−α

K2−α

The idea of diminishing returns to capital is formally captured by the fol-
lowing assumptions:

dY

dK
> 0 and

d2Y

dK2
< 0 for all K,

and by the Inada conditions:

lim
K→∞

dY

dK
= 0 and lim

K→0
dY

dK
=∞, (38)

Instead of assuming the optimising behaviour for consumers, we adopt here
the alternative form of saving behaviour, namely that people save a constant
proportion s of gross income Y . We also assume that capital depreciates at the
rate δ. Thus the capital accumulation equation is:

·
K = sY − δK (39)

The behaviour of this economy is illustrated in Figure 3. Diminishing re-
turns to capital imply that output will not grow as fast as capital, that is, the
production function is concave in the (Y,K) space. Consequently the savings
function, sY , is also concave which means that saving will not grow as fast
as depreciation. So, the economy eventually reaches a steady-state equilibrium,
K∗, where depreciation is equal to saving, and capital growth (and consequently
output growth) is zero:

sY = δK ⇔ sKα(AL)1−α = δK

⇔

K∗ = AL
hs
δ

i 1
1−α ∴

·
K

K
= 0

and

Y ∗ =
·
AL

hs
δ

i 1
1−α

¸α
(AL)1−α = AL

hs
δ

i α
1−α ∴

·
Y

Y
= 0
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We can now analyse the third way of obtaining sustained positive economic
growth. It entails dropping the standard assumption of the neoclassical model,
mentioned above, of diminishing returns to physical capital.
This is done by Jones and Manuelli [1990]. They present a model with a

production function that violates the first Inada condition, and thus delivers
sustained endogenous growth. Let us analyse their work:
We modify their production function so as to keep similarity with the models

discussed previously in this literature review. The production function is, then:

Y = vK +Kα(AL)1−α, (40)

where A and L are constant.
With such production function, the standard conditions:

dY

dK
= v + αKα−1(AL)1−α > 0,

and

d2Y

dK2
= α(α− 1)Kα−2(AL)1−α < 0

are met.
However, this production function violates the first Inada condition, as can

be seen below:

lim
K→∞

dY

dK
= v > 0, (41)
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Let us see how this changes the results of the model.
The capital accumulation equation is, as before:

·
K = sY − δK

The behaviour of this economy is pictured in Figure 4.
Because lim

K→∞
dY
dK = v, the savings function tends asymptotically to the line

svK. If this line is above the line δK, then depreciation never catches up with
savings, meaning that this economy can sustain forever a positive growth rate for
capital and output, which are the same as the per-capita growth rates, because
population is constant.
The growth rate of per-capita capital is:
·
k

k
=

·
K

K
=
sY

K
− δ = s

vK +Kα(AL)1−α

K
− δ = sv + s

(AL)1−α

K1−α − δ (42)

As K goes to infinity, gk = sv − δ. So, positive sustained per-capita growth is
possible for sv > δ.
If, instead of the fixed saving rate, the model adopts the consumers’ opti-

mising behaviour, then per-capita growth is given by:

gy = gk = gc =
1

σ
[
dY

dK
− δ − ρ]

And then, as lim
K→∞

dY
dK = v, sustained positive per-capita growth is obtained if

v > δ + ρ.
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Another model that assumes away diminishing returns to capital is that of
King and Rebelo [1990]. These authors contemplate human capital and assume
that both physical capital and human capital are produced with both physical
capital and human capital under two distinct production functions. However,
King and Rebelo [1990] keep the result that broad capital (which equals physical
capital plus human capital) is produced with non diminishing returns.
Barro and Sala-i-Martin [1995, Chp.5, page 172] also analyse a model that

eliminates diminishing returns to capital. They work with a constant returns
to scale production function and the one-sector-model assumption that output
can be used for consumption, investment in physical capital or investment in
human capital10 .
Here, once again, we modify Barro and Sala-i-Martin’s [1995, Chp.5, page

172] model so as to work with a production function common to all the models
discussed in this literature review.
The assumed production function is, then:

Yt = K
α
t

¡
AtL

h
t

¢1−α
, (43)

where the technology parameter A is constant, K is physical capital, and Lh =
hL is the number of workers L multiplied by their human capital h. Only the
combination hL is relevant for output.
Labour L is constant, so growth of Lh is only due to the growth of h.
Let us rename Lh = H. So the production function becomes:

Yt = K
α
t (AtHt)

1−α

The budget constraint for this economy is:

Yt = Ct + IKt + IHt, (44)

and the investment equations are:

·
Kt = IKt − δKt (45)
·
Ht = IHt − δHt

Assuming that households are also producers, the current-value Hamiltonian
expression for the representative agent’s maximisation problem is:

Jt =
C1−σt

1− σ
+ ut[IKt − δKt] + vt[IHt − δHt] + wt[K

α
t (AtHt)

1−α − Ct − IKt − IHt],

where u and v are the current-value of physical capital and human capital
accumulation respectively, and w is the Lagrangian multiplier associated with
the budget constraint.

10Barro and Sala-i-Martin [1995, Chp. 5] also discuss models which assume different tech-
nologies for the production of goods and the production of human capital.
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The three first-order conditions are:

dJt
dCt

= 0 (46)

⇔
·
C

C
= − 1

σ

·
w

w

dJt
dIKt

= 0 (47)

⇔
u = w

dJt
dIHt

= 0 (48)

⇔
v = w

and the two co-state equations are:

dJt
dKt

= ρut − ·
ut (49)

⇔
·
u

u
= ρ+ δ − αKα−1(AH)1−α

dJt
dHt

= ρvt − ·
vt (50)

⇔
·
v

v
= ρ+ δ − (1− α)AKα(AH)−α

As u = v = w, the solution requires:

·
u

u
=

·
v

v
(51)

⇔
αKα−1A1−αH1−α = (1− α)AKαA−αH−α

⇔
K

H
=

α

1− α
,

and the growth rate, equal to the per-capita growth rate due to the constancy
of the population, is given by the Euler equation:

g =
1

σ
[αKα−1(AH)1−α − δ − ρ] (52)

=
1

σ
[A1−ααα(1− α)(1−α) − δ − ρ]
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Output is equal to:

Y = Kα(AH)1−α

= Kα−1(AH)1−αK

= A1−α
µ
1− α

α

¶1−α
K

= BK,

where B is a constant. This means that d2Y
dK2 = 0, which is a violation of the

standard assumptions for physical capital.
Hence this model, too, generates sustained positive endogenous growth via

the elimination of the diminishing returns to physical capital assumption, ob-
tained through a constant KH ratio.
This model, like the AK model, has no transitional dynamics. The growth

rate is always given by expression 52.

6 Discussion
In the previous Sections, we have analysed three alternative ways of achieving a
constant marginal productivity of capital. The first mechanism relies on techno-
logical progress, the second relies on human capital accumulation and the third
consists of eliminating the assumption of diminishing returns to capital from
the production function.
In their processes of generating sustained economic growth, all the dis-

cussed endogenous growth models start up with a production function like
Y = Kα(AL)1−α, and arrive at a production function of the type Y = BK,
with B constant, which implies a constant marginal productivity of capital.
There is, however, a fundamental difference between both R&D-based and

human capital-based growth models and the third type of endogenous growth
models studied. In order to see this difference recall, firstly, Romer’s [1990]
R&D-based growth model, discussed in Section 3. Its production function is:

Y = L1−αY

Z A

0

x(i)αdi

= L1−αY Axα

= L1−αY KαA1−α

= L1−αY Kα−1A1−αK

=
L1−αY A1−α

K1−α K

= BK,

where B is constant because LY is constant and K grows at the same rate as
A.
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Next recall Lucas’ [1988] human capital-based growth model, studied in Sec-
tion 4. Its production function is:

Y = Kα(AuhL)1−α

= Kα(AuL)1−αh1−α

= Kα−1(AuL)1−αh1−αK

=
(AuL)1−αh1−α

K1−α K

= BK,

where B is constant because A, L and u are constant and gK = gh.
With these two models, the production function Y = BK is obtained because

diminishing returns to physical capital are overcome by either the progress of
technology or the accumulation of human capital.
As opposed to these two types of endogenous growth model, in the third

group of endogenous growth models, diminishing returns to physical capital are
not overcome. They are eliminated. To see this, recall, for instance, the model
of Barro and Sala-i-Martin [1995, Chp. 5, page 172] analysed in Section 5. Its
production function is:

Y = Kα(AH)1−α

= Kα−1(AH)1−αK

= A1−α
µ
H

K

¶1−α
K

= A1−α
µ
1− α

α

¶1−α
K

= BK,

where B is constant because A is constant and the ratio H
K is equal to a constant

1−α
α .
Notice that in this model, the ratio K

H is equal to α
1−α , meaning that it is

fixed by the technology parameter, which is a given in the model. That is, the
value of this ratio will be the same for all balanced growth paths. Whereas, for

instance, in the R&D-based model, the ratio K
A = x = LY

h
α2

r

i 1
1−α

depends on

the equilibrium values of LY and the interest rate. That is, for each balanced
growth path, there is a different KA ratio, which is constant because gk = gA.
Arrow’s [1962] model can be placed in this third group of growth models,

as it also eliminates diminishing returns to capital. It does so by assuming
that knowledge creation is a side product of investment. That is, a firm that
invests in physical capital learns simultaneously how to produce more efficiently.
This learning-by-doing assumption is also combined with the assumption of
knowledge spillovers. Arrow’s model possesses a constant marginal productivity
of capital, for labour constant, because gA = gK by assumption.
The extreme case of a model that drops the diminishing returns to scale

assumption is the so called AK model. This model assumes that production
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exhibits exactly constant returns to scale to a broad concept of capital, that is,
to the collection of all kinds of capital, for instance physical and human capital.
The production function is:

Y = AK,

and the marginal productivity of capital is A, a constant. Hence, this production
function simply does not display diminishing returns to capital. Solow [2000]
mentions his dislike of such kind of model, as it seems to assume exactly what
it wants to arrive at.
After this discussion, we next analyse two other important initial contribu-

tions to endogenous growth theory, namely those by Grossman and Helpman’s
[1990] and Aghion and Howitt’s [1992]. These models are R&D-based growth
models.

7 Other R&D-Based Growth Models

7.1 Grossman and Helpman’s R&D-Based Growth Model

In Grossman and Helpman’s [1990] model, growth is obtained through the com-
bination of two mechanisms: (1) production of differentiated consumer goods,
which are expanding because (2) there is deliberate accumulation of knowledge.
The authors build on Dixit and Stiglitz [1977] in defining an indexD through

a constant elasticity of substitution (CES) function11:

D =

"Z A

0

xαj dj

# 1
α

, 0 < α < 1, (53)

where xj is the quantity of the differentiated good j, A is the number of available
brands, and α is a parameter. The elasticity of substitution between every pair
of goods is 1

1−α .
Equation 53 yields constant elasticity demand functions for each good. It

implies that a doubling of each of the xj , for given A, doubles the index D. The
index increases with each of the xj individually, but at a non increasing rate.
A higher α means that the goods are better substitutes in consumption. This
specification captures the notion that consumers like variety.
The price index of D, pD is given by:

pD =

"Z A

0

p
− α
1−α

j dj

#− 1−α
α

(54)

Now, assuming that, once invented, all brands require one unit of labour per
unit output, marginal cost equals the wage rate w for all brands.

11See Solow [2000, Chp.10] for further insight into this Dixit and Stiglitz representation.
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Then, assuming that the wage rate equals unity, the profit maximisation
problem of these monopolistic competitors leads to the following markup rule:

pj = p =
w

α
=
1

α
(55)

With this price, profits are:

π = px− wx (56)

= (1− α)p
X

A

=
1− α

α

X

A

where X = Ax, represents aggregate output of differentiated goods.
Development of new varieties of goods requires an effort in R&D. The R&D

costs have to be paid up front, before profits are realised, and this introduces, as
in Romer’s model, natural dynamics in the model through the Fisher equation:
A typical firm holds the patent on the differentiated good and enjoys indefinite
monopoly power on the supply of its good. The value of this firm is then equal
to the present discounted value of its profits:

v(t) =

Z ∞
t

e−r(τ−t)π(τ)dτ (57)

⇔
·
v = rv − π

⇔
r =

·
v

v
+

π

v

The cost of inventing a new product is defined as:

aw

A
=
a

A

where a is a parameter and A represents the stock of knowledge, equal to the
number of already invented goods.
Notice that this specification introduces an externality into the model. When

they create new goods, producers are increasing the level of A, which makes in-
novation more productive for other producers, as it lowers the cost of innovation.
A firm that invests in the creation of a new good expects a reward of v on

its R&D effort. It will then engage in R&D unless the R&D cost is larger than
v. The dynamic free-entry condition is thus that v must be less than or equal to

the cost of creating a new good. And if
·
A > 0 then v is equal to the innovation

cost, expressing the idea that the flow of new inventions equals zero unless the
innovation cost is just equal to the value of a firm. The free-entry condition is,
then:

v =
a

A
if

·
A > 0 (58)
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Now, clearing of the labour market requires that employment in R&D plus
employment in manufacturing of the goods must equal the total supply of labour,
L, which is assumed constant. That is:

a

A

·
A+X = L, (59)

where a
A is the amount of labour necessary to make one invention,

·
A is the

number of inventions currently being made, and X = Ax is the total amount of
labour involved in the production of goods already in existence.
Like Romer’s, this model is perfectly symmetric: Firms have the same tech-

nology of production, goods enter the utility function in the same way and have
the same elasticity of demand and the same price. Hence the quantities of each
good produced are the same, xi = x.We can then evaluate the consumption in-
dex, C. Variable C represents consumption in terms of index D. In equilibrium
C = D. So:

C = D =

"Z A

0

xαj dj

# 1
α

= A
1
αx = A

1−α
α X,

from which follows that the growth rate of C is:

·
C

C
=
1− α

α

·
A

A
+

·
X

X

Total labour L is assumed constant, which means that the growth rate of
aggregate variables equals the growth rate of the per-capita variables. Therefore
we can write:

gc =
1− α

α

·
A

A
+

·
X

X

Equation 59 says that, as L is constant, a balanced growth path solution,
that is a constant growth rate g, requires that X is constant. And so, we have:

agA +X = L⇔ gA =
1

a
(L−X)

Also, expression:

C = A
1−α
α X

implies that

gc =
1− α

α
gA (60)
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Notice that X being constant implies that in equilibrium the quantities of
the existing goods will be decreasing at the same rate as new goods are being
created:

X = Ax⇒
·
X

X
= 0⇔

·
x

x
= −

·
A

A

Now follows the determination of the growth rate of A, the engine of growth
in this R&D-based model. For that we first work on the Fisher equation 57,
repeated here:

r =

·
v

v
+

π

v

As seen before, in a steady-state with positive gA, we have, according to equation
58:

v =
a

A
⇒

·
v

v
= −gA

Next, we recall equation 56 for profits:

π =
1− α

α

X

A

Then:

π

v
=
1− α

α

X

a

The Fisher equation 57 can then be rewritten as:

r = −gA + 1− α

α

X

a
(61)

⇔
r = −gA + 1− α

α

(L− agA)
a⇔

gc =
(1− α)2

α

L

a
− (1− α)r

where X was replaced by its equivalent expression given by the resource con-
straint 59, and gA was replaced by its equivalent in terms of gc, given by equation
60.
In this study, we assume the optimising version of consumers behaviour.

So investment in R&D has to be financed by savings, which are determined
by households’ intertemporal preferences. The, by now familiar, preferences
structure is used.
So maximising:Z ∞

0

e−ρtU(Ct)dt , U(C) =
C1−σ

1− σ
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subject to an intertemporal constraint, leads the representative household to
allocate consumption according to the following rule:

·
C

C
= gc =

1

σ

Ã
r − ρ−

·
pD
pD

!
(62)

Now, recall pD, given in equation 54, and repeated below:

pD =

"Z A

0

p
− α
1−α

j dj

#− 1−α
α

As pj = p for every good, it follows that:

pD = A
− 1−α

α p,

which means that:

·
pD
pD

= −1− α

α

·
A

A

So equation 62 can be rewritten as:

gc =
1

σ

µ
r − ρ+

1− α

α
gA

¶
(63)

⇔
gc =

1

σ − 1 (r − ρ)

The equilibrium growth rate is determined by the system composed of the
two equations 61 and 63, in two unknowns r and gc. Equation 61 displays
a negative relationship between r and gc, and equation 63 displays a positive
relationship between r and gc. Therefore, as the two curves are linear, the
equilibrium growth rate is uniquely determined.
So, the balanced growth rate solution of Grossman and Helpman’s model is:

gc =
1

σ − 1 (r − ρ) (64)

⇔
(σ − 1)gc = − 1

1− α
gc +

1− α

α

L

a
− ρ

⇔
gc =

1− α

[α+ σ(1− α)]

·
1− α

α

L

a
− ρ

¸
The growth rate depends positively on the size of population L. This fact is

the scale-effects prediction, mentioned earlier, that characterises the first gener-
ation of R&D-based growth models, but which is at odds with empirical results.
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Growth will also be higher the lower the value of α, that is the higher the
degree of monopoly (1−α). Growth also depends negatively on the value of a, as
the cost of making an innovation is proportional to a. Hence the lower the cost of
innovation, the higher the rate of innovation. Finally, from the preferences side,
there is a negative relationship between ρ and σ and the steady-state growth
rate.

7.2 Aghion and Howitt’s R&D-Based Growth Model

In Aghion and Howitt’s [1992] model, economic growth is generated by a random
sequence of quality improving innovations that result from research activities
which are themselves uncertain.
This model has two positive externalities. One arises from the fact that

monopoly rents are smaller than the consumer surplus. The other positive
externality has its origin in the fact that one invention makes possible the next
invention.
There is, on the other hand, a negative externality which is due to the fact

that a new invention renders the previous one obsolete and replaces it.
We pick up Aghion and Howitt’s [1998, Chp. 2] description of their model,

and develop it below:
This economy has no capital accumulation and it is populated by a contin-

uous mass of individuals, L, equal to total labour supply, with linear intertem-
poral preferences, given by:

U(y) =

Z ∞
0

yte
−rtdt,

where r is the rate of time preference also equal to the interest rate.
The labour force, L, produces capital goods, x, in a one-to-one fashion, and

then the capital goods are used to produce the final good, y, according to the
following production function:

y = Axα , 0 < α < 1, (65)

where x is the quantity of capital goods in existence.
Innovation consists of inventing a new intermediate good that, when suc-

cessful, renders the old one obsolete and raises the technology parameter, A, by
a constant factor, γ:

Ai+1
Ai

= γ > 1,

where i is the number of innovations that have occurred so far.
When the amount n of labour is assigned to R&D, innovations arrive ran-

domly according to a Poisson process with arrival rate λn, λ > 0. Parameter λ
indicates the productivity of the research technology. This specification means
that the probability of an innovation in a given unit of time is λn12.
12 See Aghion and Howitt [1998, page 55] for an explanation of Poisson Processes.

38



The economy’s total stock of labour is allocated between R&D and the pro-
duction of capital goods. So the labour market clearing condition is:

L = x+ n, (66)

where x is the amount of labour devoted to manufacturing (as goods are pro-
duced by labour with a one-to-one technology), and n is the amount of labour
dedicated to research.
The amount of labour allocated to research is determined by the following

arbitrage condition:

wi = λVi+1, (67)

where w is the wage rate and Vi+1 is the discounted expected payoff to the
(i+ 1)th innovation.
This arbitrage condition rules the dynamics of the economy over its suc-

cessive inventions. It means that in equilibrium a worker must be indifferent
between an hour’s work in manufacturing, wi, and an hour’s work in research.
The value to a worker of an hour’s work in research is equal to the flow proba-
bility of an innovation, λ, times the value of that innovation, Vi+1, as an hour’s
work in research after the ith innovation results in the (i+ 1)th innovation.
Now, the value Vi+1 is determined by the following asset condition:

rVi+1 = πi+1 − λni+1Vi+1, (68)

which says that the expected income generated by a patent on the (i + 1)th
innovation during a unit time interval, namely rVi+1, is equal to the profit flow
that the producer of the (i+1)th innovation obtains, πi+1, minus the expected
loss that will occur when the next innovation replaces the (i+ 1)th innovation.
This expected loss is equal to λ, the flow probability of the innovation occur-
ring, times ni+1, the amount of labour dedicated to research after the (i+ 1)th
innovation, times Vi+1,the value that will be lost.
In other words, there must be indifference between acquiring a patent of an

intermediate good to produce it, and putting the same amount of money in the
bank and earning its interest.
Now:

rVi+1 = πi+1 − λni+1Vi+1 (69)

⇔
Vi+1 =

πi+1
r + λni+1

Equation 69 shows the effects of creative destruction. The higher the number
of researchers after the (i + 1)th innovation, ni+1, the smaller the payoff to
innovating the ith good.
Let us move on to the specification of the profit flow, πi and of the flow

demand for manufacturing labour, xi.

39



Final good production uses each intermediate goods according to the profit
maximisation rule:

dy

dxi
= pi,

which, recalling the production function 65:

y = Axα,

is equivalent to:

αAxα−1 = pi (70)

⇔

x =

Ã
α
pi
Ai

! 1
1−α

Then follows the profit maximisation problem of the intermediate good pro-
ducer that uses the ith innovation. This monopolist can be thought to be either
the inventor and producer of the good i or the producer who buys the patent
at the price Vi. His problem is to:

Max πi = pix− wix
And its solution entails the markup rule:

pi =
wi
α

So, replacing pi in equation 70 gives us the required specification for xi:

xi =

Ã
α2

wi
Ai

! 1
1−α

(71)

Then, we can obtain the expression for πi :

πi = pix− wix (72)

= (1− α)pix

= (1− α)αAi

Ã
α2

wi
Ai

! α
1−α

Now, the arbitrage condition 67 can be rewritten in the following way:

wi = λVi+1 = λ
πi+1

r + λni+1

= λ

(1− α)αAi+1

µ
α2
wi+1
Ai+1

¶ α
1−α

r + λni+1
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So, recalling that Ai+1
Ai

= γ, the productivity-adjusted wage rate, ωi = wi
Ai
, is

equal to:

ωi =
wi
Ai
= λ

γ(1− α)α

µ
α2

wi+1
Ai+1

¶ α
1−α

r + λni+1
,

The new arbitrage condition is then:

ωi =
γλeπ(ωi+1)
r + λni+1

, (73)

where eπ = πi+1
Ai+1

.

The labour market clearing condition can also be written as:

L = ni + ex(ωi) (74)

The steady-state or balanced growth equilibrium is defined as a stationary
solution to the system composed by equations 73 and 74 with ωi = ω and
ni = n. This means that both ω and n remain constant over time, so that w, π
and y are all scaled up by the same γ > 1 each time a new invention occurs.
So, in a steady-state the system to be solved is:½

ω = γλeπ(ω)
r+λn

L = n+ ex(ω) (75)

In the space (ω, n), the arbitrage equation is downward sloping, as a rise
in n increases the denominator of the ratio. In comparison, the labour market
clearing equation is upward sloping, because as L is constant, if n increasesex(ωi) must fall, which happens if ω rises.
As one of the equations is positively sloped and the other is negatively sloped,

the balanced growth path solution (ω∗, n∗) is unique. Figure 5 illustrates such
an equilibrium.
Now, continuing with the calculation of this solution, we must replace eπ(ω)

by a workable expression:

π = px− wx
=

µ
1− α

α

¶
wx

⇔eπ =
π

A
=

µ
1− α

α

¶
ωex

⇔eπ =

µ
1− α

α

¶
ω(L− n)
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Figure 5:

Then, replacing eπ in the arbitrage equation 73, we obtain the equilibrium value
of n:

ω =
γλ
¡
1−α
α

¢
ω(L− n)

r + λn
(76)

⇔
r + λn = γλ

µ
1− α

α

¶
(L− n)

⇔
n∗ =

γλ
¡
1−α
α

¢
L− r

λ
h
α+γ(1−α)

α

i
Knowing n∗, we can then use the labour market clearing condition to implicitly
derive the equilibrium value ω∗.
Now, what is left is the determination of the growth rate of the economy. So,

in a steady-state, the flow of the final good, y, produced between innovations
ith and (i+ 1)th is:

yi = Ai(x
∗)α = Ai(L− n∗)α,

which implies that:

yi+1 = Ai+1(L− n∗)α
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And, therefore:

yi+1
yi

=
Ai+1
Ai

= γ (77)

Equation 77 tells us that ln(yi) increases by an amount equal to ln(γ) each
time an innovation occurs. But, as the real time between two innovations is
random, the time path of ln(y) is also a random step function, with the size of
each step being equal to ln(γ) > 0. Also the time interval between each step
is exponentially distributed with parameter λn∗. Taking a unit time interval
between t and t+ 1, we have:

ln y(t+ 1) = ln y(t) + (ln γ)ε(t),

where ε(t) is the number of innovations between t and t+ 1.
As ε(t) is distributed Poisson with parameter λn∗, we have:

E [ln y(t+ 1)− ln y(t)] = λn∗(ln γ) (78)

⇔
g = λn∗(ln γ),

where g is the average growth rate of output.
So, the equilibrium growth rate of this economy has been found. It is pro-

portional to n∗ and so this counts as an endogenously determined growth rate.
Notice that this R&D-based growth model is also characterised by the scale-

effects property. In fact, equation 76 says that a rise in L increases n∗, and
therefore increases g.
Growth is also influenced positively by λ, the research productivity param-

eter, as it raises n∗. On the contrary, a rise in r or in α negatively influences
n∗, and so decreases the equilibrium growth rate.

8 Some Limitations of the Endogenous Growth
Models Studied

In this Section we discuss some limitations found in the endogenous growth
models studied in this literature review. We highlight and analyse four such
limitations.
The first limitation concerns the function that is responsible for endogenous

growth. There seems to be a substantial degree of arbitrariness in the construc-
tion of this function in all endogenous growth models.
The second shortcoming arises from the intertemporal preferences structure

which these models adopt. This preferences structure generates a positive rela-
tionship between the equilibrium interest rate and the equilibrium growth rate.
However, such a positive relationship is not empirically supported.
The third limitation of these growth models also concerns the preferences

structure. The specification of the preferences structure implies that diversity
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of growth rates across countries can only be explained if it is assumed that in-
ternational capital markets are imperfect. This assumption of imperfect capital
markets is required so that countries are able to display different interest rates,
and consequently have different growth rates, in equilibrium.
Fourthly, the existing endogenous growth models are not equipped to analyse

short-run effects of the aggregate demand on the growth path of the economies.
We complete the Section with a brief exposition of a critical assessment to

endogenous growth theory, by Fine [2000], in order to provide an overall insight
into important topics within endogenous growth theory.

8.1 The Specification of the Function that Generates En-
dogenous Growth

Solow [2000] considers the endogenous growth models discussed in the previous
Sections as very interesting and fertile, and responsible for moving growth theory
forward. However, he highlights the arbitrariness of the specifications through
which endogenous growth is delivered. This arbitrariness seems to have its roots
in the requirement for growth models to achieve a balanced growth path.
Solow [2000] gives three reasons for this tendency of growth theory to focus

on steady-states. Firstly, the basic neoclassical model usually has a unique
steady-state and all equilibrium paths converge to this steady-state. Moreover,
an economy in which the institutional structure has been fixed for a long time
is expected to be near a steady-state.
Secondly, it has been thought that a defensible model of economic growth

should be able to reproduce the six “stylised facts” about growth asserted by
Kaldor. Solow writes that these “stylised facts” are generally a compact de-
scription of a steady-state.
His third reason is that some years ago there was no good way to study

non-steady-state paths. Even nowadays, policy effects are analysed in terms of
steady-state comparisons. The truth is that off the steady-state, the dynamics
of endogenous growth models can display local indeterminacies, instability or
cycles.
However, to achieve a balanced growth path solution is a very demanding

task. A number of specific assumptions is required, so that endogenising the
growth rate will not result in explosively fast or decaying growth rates. In this
sense, Solow’s [2000] argument is that in the various endogenous growth models,
the authors often do not provide detailed justification for these key assumptions
which are required to generate a balanced growth path solution.
We now elaborate on this characteristic of arbitrariness of the existing en-

dogenous growth models.
As we discussed in Section 3, in Romer’s [1990] model the specification for

the invention of new designs, which is the key specification through which en-
dogenous growth is delivered, is:

·
A = δLAA (79)
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This specification delivers a constant growth rate if labour dedicated to
research LA is constant:

gA =

·
A

A
= δLA (80)

This balanced growth path solution, that is a solution with a constant growth
rate, carries the implication that the growth rate of the economy, equal to the
growth rate of designs, is proportional to the number of researchers LA. This
result is the scale-effects prediction mentioned earlier.
Jones [1995] also wishes to demonstrate that Romer’s [1990] specification

for R&D can be deemed as arbitrary. With that purpose, Jones presents the
following generalised specification for the invention of new designs:

·
A = δLλAA

φ, (81)

that becomes Romer’s specification for λ = φ = 1.
The marginal productivity of researchers is:

d
·
A

dLA
= λLλ−1A Aφ,

which varies with knowledge according to:

d

µ
d
·
A

dLA

¶
dA

= φλLλ−1A Aφ−1

In Jones’ specification, the assumption φ < 0 represents negative external
returns from the stock of knowledge in the innovation process. Likewise the
assumption φ > 0 implies positive external returns and the assumption φ = 0
means zero external returns or constant returns to scale.
Jones [1995] argues that the assumption φ = 0 might seem more natural,

as Romer [1990] himself states that whether there are increasing or decreasing
returns to R&D is a philosophical question. Jones also states that Romer’s
assumption of φ = 1 constitutes a “completely arbitrary degree of increasing
returns” and is not empirically supported.
The truth is that, in Romer’s model if, for example, instead of equation 79

we had:

·
A = δLAA

η , η 6= 1,

then the growth rate of knowledge would be:

g =

·
A

A
= δLAA

η−1 =
δLA
A1−η

45



The model would not display a balanced growth path, because LA is constant (in
Romer’s model) and A is growing. If η < 1, the model would display decaying
growth and if η > 1, the model would result in explosive growth.
The same kind of arbitrariness can be found in Lucas’ [1988] human capital-

based model, studied in Section 4. Its human capital accumulation equation,
which is the key specification through which endogenous growth is delivered, is:

·
h = hγ(1− u) (82)

Analogous to Romer’s [1990] assumption for the R&D function, Lucas’ spec-
ification also implies that the accumulation of human capital is proportional to
the level of human capital. It delivers a constant growth rate, for u constant:

g =

·
h

h
= γ(1− u) (83)

Solow [2000] states that this specification is based on very powerful assump-
tions, that of strong increasing returns to scale and constant returns to human
capital. However, if, for instance, h were replaced by hλ, in Lucas’ model:

·
h = hλγ(1− u) , λ 6= 1,

the growth rate would be:

g =

·
h

h
= hλ−1γ(1− u) = γ(1− u)

h1−λ

The model would not deliver a balanced growth path solution for u constant.
If λ < 1, the model would not have sustained positive long-run growth, as its
growth rate would be eroding over time. Likewise, if λ > 1, the model would
result in explosive growth.
If we tried an extension to Lucas’ model of the same kind as the one that

Jones [1995] did with Romer’s [1990] model, that is, if we allowed u to vary with
time, we would have:

g =

·
h

h
= hλ−1γ(1− u),

where a constant growth rate would require that:
·£

hλ−1γ(1− u)¤
hλ−1γ(1− u) = 0⇔

·£
hλ−1γ − uhλ−1γ¤
hλ−1γ(1− u) = 0⇔

⇔ (λ− 1)
·
hhλ−2γ − u (λ− 1)

·
hhλ−2γ − ·

uhλ−1γ
hλ−1γ(1− u) = 0

⇔ (1− u) (λ− 1)
·
hhλ−2γ − ·

uhλ−1γ
hλ−1γ(1− u) = 0

⇔
·
h

h
=

·
u

(1− u) (λ− 1) ,
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which is only possible for
·
u = 0, u 6= 1,λ 6= 1. Under these conditions there

would be no growth, and thus no endogenous growth model.
In Grossman and Helpman’s [1991] model, the crucial specification that gen-

erates a constant growth rate is that of the cost of inventing a new design:

cos t =
a

A
, (84)

where A is the stock of designs invented so far.
This model obtains a balanced growth path solution because equation 84 fits

the labour market equilibrium condition in a way such that it can generate a
constant growth rate:

a

A

·
A+X = L, (85)

where a
A

·
A is the amount of labour dedicated to research, X is the amount

of labour employed in manufacturing and L is total labour. Equation 85 is
equivalent to:

ag = L−X (86)

⇔
g =

L−X
a

,

The model displays a balanced growth path solution as L and a are constant
and X is required to be constant.
Again, if, instead of 84, the cost specification were:

cos t =
a

Aφ
, φ 6= 1,

the model would not deliver a balanced growth path solution, as seen below:

a

Aφ

·
A+X = L

⇔
ag

Aφ−1 +X = L

⇔
g =

Aφ−1(L−X)
a

The growth rate is not constant, because A is growing. If φ > 1, which would
mean that the cost of innovation would fall with the stock of knowledge (for
instance, in the case that one invention makes the following inventions easier,
because inventors “stand on the shoulders of giants”), the model would result
in explosive growth. If φ < 1, the model would result in decaying growth.
In particular, if φ < 0, the cost of innovation would increase with the stock
of knowledge (for instance, if invention of new products becomes increasingly
difficult, as the easiest inventions are the first to be made).
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Notice that if we tried, once again, a solution of the same kind as Jones’
[1995], that is requiring the growth rate of X to be such as to deliver a balanced
growth path:

g =
Aφ−1L
a

− A
φ−1X
a

,

with gX = (1− φ)gA, we would still not have a balanced growth path solution,
because L is constant and thus the first term would never be constant.
In Aghion and Howitt’s [1992] model, the element of arbitrariness arises in

the equation:

Ai+1
Ai

= γ > 1, (87)

which gives:

Yi+1
Yi

= γ

So:

Yt+1
Yt

= γet

and the growth rate is:

g = lnYt+1 − lnYt = εt ln γ = λn∗ ln γ (88)

If, instead we had the example given in Solow [2000, page 177]:

Ai+1 = Ai + γ,

then we would have:

Yt+1 = Yt + λn∗γ

and so the growth rate would be non constant:

g =
Yt+1 − Yt

Yt
=

λn∗γ
Y

,

that is the growth rate would tend to zero as output tended to infinity.
Still, Solow [2000] writes that he is not trying to be overly critical and

that, although Aghion and Howitt’s model is still far from a description of real
research, endogenous growth theorists should try and follow their attempt in
the sense of creating a theory about the endogenous creation of new technology.
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8.2 The Interest Rate and the Growth Rate

As Fine [2000] analyses, one example of the microeconomic foundations of en-
dogenous growth theory is the fact that growth models make growth dependent
upon the optimising behaviour of representative individuals.
In particular, all the models we have studied and developed in this review

adopt the same intertemporal preferences structure for a representative con-
sumer, namely the one for which the intertemporal utility maximisation problem
leads to the familiar Euler equation:

g =
1

σ
(r − ρ), (89)

where g and r are the growth rate and the interest rate respectively, 1σ is the
elasticity of intertemporal substitution and ρ is the rate of time preference.
Let us derive this Euler equation, with a simple utility maximisation exercise.

Suppose the representative individual maximises the present discounted value
of its utility:

Max

Z ∞
o

U(Ct)e
−ρtdt , U(Ct) =

C1−σt

1− σ

subject to the following restriction:

·
At = rAt + wt − Ct,

where variable A stands for assets and w is the wage rate, and it is assumed
that households provide one unit of labour per unit of time.
Then the current-value Hamiltonian is:

Ht =
C1−σt

1− σ
+ θt [rAt + w − Ct]

The first two optimality conditions are:

dH

dC
= 0⇔ C−σ = θ (90)

⇔ gC = − 1
σ
gθ

and

dH

dA
= ρθ −

·
θ ⇔ rθ = ρθ −

·
θ (91)

⇔ gθ = ρ− r
Together, they give the Euler equation:

gC = − 1
σ
gθ =

1

σ
(r − ρ)
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which gives us a balanced growth path solution for r constant.
If, for instance, the utility function were:

U(Ct) = logCt,

the first order condition 90 would be:

C−1 = θ

which, differentiating, would give:

−
·
CC−2 =

·
θ

⇔
−
·
CC−2

C−1
=

·
θ

θ⇔
gC = −gθ

And the Euler equation would be:

gC = (r − ρ) ,

which would mean that consumption plans do not depend on the elasticity of
intertemporal substitution, 1σ nor on the coefficient of relative risk aversion, σ.
Weil [1990] writes that most of the empirical evidence suggests that agents

care about intertemporal substitution and also about risk taking, so optimal

consumption plans seem to be better reflected by U(Ct) =
C1−σ
t

1−σ .
Still, the use of equation 89 to describe the consumers’ side generates a pos-

itive relationship between the general equilibrium interest rate and the general
equilibrium growth rate. Although most endogenous growth models obtain this
relationship, it is not empirically observed, as pointed out by Helpman [1992].
This constitutes another limitation of the models discussed in this literature
review.
However, as Helpman [1992] discusses, this fact does not necessarily reduce

the usefulness of endogenous growth models. These models were created to
analyse supply-side mechanisms of growth that build on the accumulation of
physical capital, the accumulation of human capital and on R&D activities. For
this reason, they treat consumption in a simple way.

Weil [1990] also argues that the utility function U(Ct) =
C1−σ
t

1−σ has the me-
chanical restriction that the elasticity of intertemporal substitution, 1σ is the re-
ciprocal of the coefficient of relative risk aversion, σ. Such restriction is “devoid
of any economic rationale”, he says, because it can not capture the empirical
evidence of both the consumers’ dislike for intertemporal substitution (high σ)
and the consumers’ moderate willingness for risk taking (low σ). Additionally,
Weil writes that such a utility function does not allow us to identify between
what influences the response of the growth rate to the interest rate - risk aversion
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or the intertemporal elasticity of substitution - since such a response depends
on the value of σ.
Weil [1990] introduces a utility function for which the constant-relative-risk-

aversion coefficient is different from the constant intertemporal elasticity of sub-
stitution. By solving an infinite-horizon stochastic consumer problem, he finds
that it is the elasticity of intertemporal substitution that governs the response
of the growth rate to the interest rate (and not the risk aversion). Still, he
obtains the same positive relationship between the growth rate and the interest
rate. Epstein and Zin [1987] produce similar results to Weil’s [1990] work.

8.3 Diversity of Growth Rates Across Countries

The use of equation 89 to describe the consumers’ side has one more potential
shortcoming, which concerns the explanation of diversity of growth rates across
countries. The fact is that if the models that use this equation are to explain
diversity of growth rates, they must assume that international capital flows do
not lead to the equalisation of interest rates around the world. This is because,
as Rebelo [1992] discusses, if international capital markets function perfectly,
then the interest rates will equalise and all countries will have their GNPs (but
not GDPs) growing at the same rate (assuming all countries share the same
values for σ and ρ). This rate is given by equation 89.
Rebelo [1992] proposed a utility function that allows for diversity of growth

rates in the presence of equalisation of interest rates across countries. His utility
function is:

U(Ct) =
(Ct − C)1−σ

1− σ
(92)

where C is the consumption subsistence level.
Solving the intertemporal maximisation problem of consumers:

Ht =
(Ct − C)1−σ

1− σ
+ θt [rrAt + wt − Ct] ,

the first-order condition is:

dH

dC
= 0⇔ (C − C)−σ = θ

Its time differentiation leads to:

−σ
·
C(C − C)−σ−1 =

·
θ

⇔
·
C

(C − C) = − 1
σ

·
θ

θ

The second-order condition is the same as before:

gθ = ρ− r
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This implies that the optimal growth rate of consumption is given by:

gc =

·
C

C
=
1

σ

C − C
C

(r − ρ) =
1

σ

µ
1− C

C

¶
(r − ρ) (93)

This equation implies that for r constant, C 6= 0 and C 6= C, there is no
balanced growth path solution. If a country starts with C < C, its growth rate
will grow, and if it starts with C > C, its growth rate will decline.
Hence, in order to explain diversity of growth rates across countries with the

same interest rate, Rebelo [1992] produced an Euler equation that gives different
growth rates for countries with different ratios C

C . Nevertheless, he had to let
go of the balanced growth path solution.
This utility function makes sense for developing countries whose growth rates

have yet to converge to the higher rates attained by developed economies. On
the other hand, empirical evidence for developed countries shows that they
tend to grow at a constant rate for long periods of time. Hence Rebelo’s result
seems not to apply to developed economies, unless their subsistence level of
consumption is zero which would result in the Euler equation becoming the
familiar one.

8.4 The Demand Side

Solow [2000] writes that if the main object of growth theory shifted from re-
searching the steady-state to researching the whole growth path of the economy,
the role of aggregate demand and its effects on the long-run path would emerge.
At present, all the existing growth models assume that the economy always

achieves its potential output. There is, for example, no distinction between the
labour force and employment, nor between the existing stock of capital and its
utilisation rate. Some models assume Walrasian equilibrium, with all markets
clearing, but Solow argues that this too is a “flat assumption”.
Solow agrees that over intervals of thirty to fifty years, growth is clearly

dominated by supply-side factors like the increase of the labour force, the accu-
mulation of physical and human capital and the technological progress.
However, he adds that growth paths are not smooth, but instead marked by

small or large periods of recession or excess demand. This raises the question
of how these macroeconomic fluctuations affect the growth path. The under-
standing of this requires the linkage of the events of the business cycle to the
evolution of the growth path.
Hence Solow argues [2000] that, in order to incorporate the demand side in

growth models, short-run and long-run macroeconomics must help each other
both analytically and empirically.
Witt [2001] also writes about the demand side as the recently emerging re-

search topic. Researchers in this field believe that more attention must be given
to consumer behaviour, which is not totally captured by the theory of utility and
the supply-side oriented approached to innovations and growth. There is, for
instance, the idea that innovativeness on the part of consumers is as important
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as innovativeness on the part of producers. Producers can only sell their inno-
vations if consumers’ wants are evolving in that same direction. Another idea
is that consumption can be motivated by the attempt to signal social status or
distinction. Witt believes that once the insights of what happens on the demand
side can be merged with the body of existing research on the production side,
a comprehensive picture of the process of economic growth can be obtained.

8.5 General Critical Assessment of Endogenous Growth
Theory

We finalise our literature review with a reference to Fine’s [2000] critical assess-
ment of endogenous growth theory. We summarise below some of his critical
thoughts on endogenous growth theory.
Firstly, Fine [2000] wites that as endogenous growth theory is based upon

microfoundations, but aims to explain macroeconomic issues, there is always
the possibility that it will be jumping between the two. Fine points out that
for a partial theory, endogenous growth theory claims too much macroeconomic
understanding. He adds that Solow [1991] is also particularly concerned with
the long-run in which the “grandly endogenous” elements such as stages of
capitalism and shifting social institutions are tied to the simplistic optimising
behaviour.
Secondly, endogenous growth theory has reached no policy consensus, nor

are its policy implications readily applicable in practice. This is because, in con-
trast to monetarism or Keynesianism, the abstract, formal and very aggregated
content of endogenous growth theory leads to policy ambiguity and imprecision.
Fine [2000] further writes that endogenous growth theory has been rapidly

growing and has substantial potential for further expanding its scope. This is
because it is based on the microeconomics of market imperfections and technical
change, and thus has many resources upon which to draw.
The negative side effect of this is that it makes the content of endogenous

growth theory arbitrary, due to the analytical strategy of generating endogene-
ity, and also subject to methodological individualism. By investing heavily in
gradually more sophisticated mathematics and statistics, endogenous growth
theorists have departed from assumptions and even from basic descriptive nar-
rative. Fine believes the theory should developed by going back to methodolog-
ical first principles and by contemplating the social, historical and other forces
within the economy.
Notwithstanding the above mentioned criticisms, Fine [2000] states that en-

dogenous growth theory has the merit of being able to explain the simplest facts
about growth (Kaldor’s stylised facts, patterns of convergence and divergence)
which could not be explained by the orthodox growth theory.
Fine also states that endogenous growth theory has, in fact, shown to be

able to accommodate endogenous productivity, monopoly, institutions, money
and finance, the patterns of growth and cycles, conflict and inequality. It can
also contemplate the political (voting) and the social (stratification). It has
been taking over radical political economy and can easily move into the fields
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of social sciences as geography and environment. This extraordinary evolution
of endogenous growth theory prompts Fine to believe that it will continue to be
an important area of the economics discipline.

9 Concluding Remarks
In this paper, we have reviewed the prototypical models of endogenous growth
in its three branches according to the engine of growth.
The purpose of this paper has been to present a both detailed and panoramic

view of the models that constitute the core of endogenous growth literature.
Firstly, we analysed how R&D activities can be modeled in growth models, so

as to become the source of sustained positive per-capita growth in the long-run.
Secondly, we studied the modelling of human capital accumulation and its

role as the engine of sustained positive economic growth.
In these two kinds of models, the diminishing marginal productivity of cap-

ital is overcome, respectively, by technological progress and by human capital
accumulation. Sustained positive long-run per-capita growth is thus made pos-
sible.
These are endogenous growth models because technological progress and

human capital accumulation are determined within the respective models.
The third group of models we discussed produce endogenous sustained growth

through the direct elimination of the diminishing returns to capital assumption
from the production function.
The numerous models that give body to endogenous growth theory are all

based on the models that have been analysed in this literature review. Hence we
believe that the comprehension of the mechanisms responsible for endogenous
growth in the models analysed here is the first basic and fundamental step
towards the ability to work theoretically with endogenous growth models.
Future theoretical work within endogenous growth theory also requires, we

believe, awareness of the limitations that characterise existing growth models.
Hence our inclusion, in the last part of this literature review, of the discussion
of some of such limitations.
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Appendix
Romer’s Model - The Social Planner Solution
In order to confirm the welfare properties of Romer’s [1990] model, let us

consider the social planner’s formulation of this model. The social planner
maximises the representative consumer’s utility:

max
c,LA

Z ∞
o

e−ρt
C1−σt

1− σ
dt, (94)

subject to the following constraints:

Yt = K
α
t L

1−α
Yt

A1−αt , (95)

·
K = Y − C, (96)

·
A = δALA, (97)

L = L = LY + LA (98)

The current-value Hamiltonian is:

H =
C1−σ

1− σ
+ θ1[K

α(L− LA)1−αA1−α − C] + θ2[δALA]

The two decision variables are Ct and LAt. So the first-order conditions are:

dH

dC
= 0 (99)

dH

dLA
= 0 (100)

and the co-state equations are:

dH

dK
= ρθ1 −

·
θ1 (101)

dH

dA
= ρθ2 −

·
θ2 (102)

Solving the problem:
Equation 99:

dH

dC
= 0⇔ C−σ = θ1 ⇔

·
C

C
= − 1

σ

·
θ1
θ1
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Equation 100:

dH

dLA
= 0⇔ θ1(1− α)(L− LA)−αKαA1−α = θ2δA

Equation 101:

dH

dK
= ρθ1 −

·
θ1 ⇔

·
θ1
θ1
= ρ− α(L− LA)1−αA1−α

K1−α

Equation 102:

dH

dA
= ρθ2 −

·
θ2 ⇔ θ1(1− α)(L− LA)1−αKαA−α + θ2δLA = ρθ2 −

·
θ2

The model is solved for its balanced growth path, the solution for which
K, Y, and C grow at a constant rate (given by the growth rate of A), and the
current-value prices θ1and θ2 decline at constant rates.
The first step is to look at equations 100 and 102 and observe the similarity

between their first terms. So, together these two equations give us:

θ2δA(L− LA)
A

+ θ2δLA = ρθ2 −
·
θ2 (103)

⇔
·
θ2
θ2

= ρ− δL

Next, log-differentiation of equation 100 leads to:
·
θ1
θ1
+ α

·
K

K
+ (1− α)

·
A

A
=

·
θ2
θ2
+

·
A

A
(104)

⇔
·
θ1
θ1

=

·
θ2
θ2

Now, equations 99, 103 and 104 are used to obtain the equilibrium growth
rate of this centralised problem:

g =

·
C

C
= − 1

σ

·
θ1
θ1
= − 1

σ

·
θ2
θ2

(105)

⇔
gSP =

δL− ρ

σ

The centralised equilibrium growth rate, gSP , given by equation 105 is higher
than the decentralised equilibrium growth rate, gD, given by equation 24, re-
peated here, for better comparison:

gD =
αδL− ρ

α+ σ
,

confirming that Romer’s decentralised model delivers a sub-optimal solution.
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