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Abstract
This paper considers a standard present-value equity price formula

with time-varying discount rates, and proposes a state-space formula-
tion that allows a decomposition of price �uctuations into fundamen-
tal and non-fundamental components. By "fundamentals" we refer to
dividends, interest rates and risk premia, both actual and expected;
the "non-fundamental" price component is de�ned residually allowing
for the possibility of a rational bubble.
The empirical application uses annual US data, postulating a sim-

ple discount factor driven by the real return on short-term public debt.
The stochastic factor explains part of the volatility in prices, but it
is not su¢ cient to exclude the occurrence of near-exponential bubbles
analogous to those found in the constant discount literature. On the
contrary, de�nition and measurement of the fundamentals, and par-
ticularly of the dividend payout, prove to be crucial in this respect.
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1 Introduction.

Was there a bubble in the nineties? The behaviour of the US stock market
in the last ten years has been exceptional in many respects. In the post-war
period, the value of equity �uctuated between 40% and 100% of the gross
domestic product. Between 1995 and 2000 the stock market capitalisation
increased from 100% to 180%; by the end of 2002 it was back to roughly 120%.
A cursory glance at the price-dividend and price-earnings ratios delivers the
same, simple message: prices were "unusually high" for a few years, and
then suddenly reverted to more "normal" levels. Some analysts attempted
an explanation of these facts on the basis of fundamentals only. A possible
interpretation is that, once the dividend is replaced by a more sophisticated
measure of the net cash�ow generated by the �rms, the behaviour of the
market appears to be consistent with some version of the classic Gordon
(1962) model (Robertson and Wright (2003), Wright (2004)). Others admit
that the decade was extraordinary, but explain it by pointing to extraordinary
structural conditions. High prices may have been determined for instance by
�rms accumulating large stocks of intangible capital (e.g. Hall, 2001) or by
the baby-boom cohort saving for retirement (Geanakoplos et al. (2002)).
These models maintain that shares are priced according to a present-value
formula, and that all low-frequency market movements are driven by observed
or expected changes in fundamentals. A common criticism is that, even when
they convincingly explain the price runup, these theories are silent on the
causes of the subsequent slump.

The alternative is to consider non-fundamental explanations, namely de-
partures from the present-value pricing principle. Not surprisingly, the nineties
revived the interest for price bubbles on the media and in the academic litera-
ture: the observed boom-and-bust cycle is in a way easier to rationalize after
accepting the idea that price changes are not always related to changes in the
present value of rationally forecasted future dividends. This line of investi-
gation presents of course its own di¢ culties. Rational, self-ful�lling bubbles
can be ruled out in many contexts by some backward induction argument,
and speculative phenomena of a non-rational nature are di¢ cult to model in
a non-arbitrary way. Furthermore, the empirical investigation has not pro-
duced clear answers on the existence and nature of price misalignments, and
many factors suggest that the task is intrinsically very di¢ cult.
This paper proposes a strategy to detect equity price misalignments, and
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presents an empirical application based on annual US data. The next section
surveys the literature on bubbles, focussing on the empirical research. In
section 3 we discuss a general framework that allows to test for bubbles
under di¤erent assumptions on the nature of the stochastic discount factor.
The key component of the model is a linearised price formula obtained by
a �rst order Taylor approximation around the unconditional mean of the
discount factor (Shiller (1981), Poterba and Summers (1986), West (1987)).
The approximation can be used to model prices, fundamentals and bubbles in
a state-space framework, which allows maximum likelihood estimation of the
bubble through the Kalman �lter (Burmeister and Wall (1982), Wu (1995,
1997), Chen et al. (2001)). An original feature of the model is that, due to
the stochastic discount factor, the rate of growth of the bubble changes over
time.

Section 4 examines the implications of the model when (i) agents discount
on the basis of a safe return R(t) augmented by a constant risk premium,
(ii) R(t) follows a stationary autoregressive process of order one and (iii)
dividends are expected to grow at a constant rate. The main prediction of
the model is a negative linear relationship between the price-dividend ratio
and the safe rate, the strength of which depends on the persistence of the
shocks to R(t). If the shocks are persistent, a high R(t) is expected to be
followed by a period of high rates, or low discount factors, which lowers
the contemporaneous price-dividend ratio. The model is estimated on three
di¤erent sets of observations. We use a Standard&Poors dataset, a non-
�nancial industry dataset, and an adjusted non-�nancial industry dataset
where the dividend is computed netting out new share issues and buybacks.
The safe return R(t) is taken to be the real rate on short-term public debt.
In section 5 we compare the explanatory power of the exponential bubble
to that of the �intrinsic� bubble proposed by Froot and Obstfeld (1991).
Section 6 concludes.

Our results can be summarised as follows. The assumption on the dis-
count factor holds in all datasets; the interest rate has a signi�cant nega-
tive impact on the price-dividend ratio, which also con�rms that there is a
monetary policy channel operating through the stock market. We estimate
signi�cant bubbles in two datasets out of three: the S&P price index and,
to a smaller extent, the non-adjusted industry share price are in�ated by
speculation in the sixties and late ninenties. In both cases, exponential bub-
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bles with time-varying rates of growth �t the data better than the intrinsic
bubble. There is no evidence of bubbles in the adjusted dataset.
The analysis suggests two conclusions. Firstly, stochastic discount factors

and rational bubbles may well coexist. It is known that US equity prices ap-
pear to be "too volatile" even after accounting for time variation in interest
rates (Campbell and Shiller (1988), West (1988)); our work shows that spec-
ulative bubbles are indeed a plausible explanation for the excess volatility.
Secondly, measurement issues are crucial: a price-dividend ratio adjusted for
new issues and buybacks is clearly incompatible with bubbles, be them ex-
trinsic or intrinsic. This is a strong incentive to think more carefully about
which fundamental the agents consider when evaluating shares.

2 Testing for bubbles.

The theoretical conditions under which rational, self-ful�lling bubbles can
arise are known (Blanchard and Watson (1982), Tirole (1982, 1985), Stiglitz
(1990), LeRoy (2004) among others). Bubbles cannot occur in a �nite-
horizon economy, or in an economy with a �nite number of in�nitely lived
traders. In a deterministic overlapping generations model, a bubble can only
arise if there are dynamic ine¢ ciencies leading to over-accumulation of cap-
ital. If the economy is e¢ cient, the bubble will eventually exceed the value
of all available resources; as long as the agents are aware of this potential
inconsistency, bubbles can again be ruled out by a backward induction argu-
ment1. Other departures from the present-value formula are possible. Price
misalignments may occur due to the existence of "noise traders" who do
not behave in a fully rational way (Black (1986), Abreu and Brunnermeier
(2003)). The misalignment, or fad, is then the di¤erence between the actual
price and the price that would be observed if all traders were rational. Since
this will be in general a mean-reverting process, in this case there are no
long-run consistency issues. Though, a limit of this literature is that the
behaviour of noise traders is often taken as given or modelled relying on ad
hoc assumptions.

1This type of awareness is widely assumed but not completely uncontroversial. LeRoy
(2004) suggests that agents who by de�nition never experienced a model failure may not
appreciate the di¤erence between a consistent and an inconsistent path - which would
make the latter as likely as the former.
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A large literature stimulated by Shiller (1981) and LeRoy and Porter
(1981) has shown that equity prices are too volatile to be consistent with
a constant discount present-value formula. Models with stochastic discount
factors linked to interest rates, consumption growth or variance of market
returns attenuate the problem but do not solve it completely: a substan-
tial portion of the variance of the price-dividend ratio remains unexplained
(Poterba and Summers (1986), Campbell and Shiller (1988), West (1988)).
Bubbles and fads are a potential explanation for the excess volatility, but
any attempt to test this hypothesis faces a basic conceptual di¢ culty: price
movements can in principle be rationalised by misalignments or by omitted
"fundamental" state variables (Hamilton and Whiteman (1985), Flood and
Hodrick (1990)).

It is possible to test for price misalignments without relying on a speci�c
parametrisation of the misalignment itself. West (1987) notes that the dis-
count factor can be estimated from a one-period arbitrage equation or from
its forward solution, under some assumption on the process used to forecast
dividends. If there is no bubble, the estimates should coincide. With a ratio-
nal bubble, the estimates should diverge because the �rst equation holds but
the second omits a variable. Hence, a test on the two set of estimates being
equal is a test of the null that there is no bubble. The author uses annual
US data and rejects the null that there are no bubbles under several alterna-
tive speci�cations of the dividend process. Chirinko and Shaller (1996, 2001)
apply an analogous idea to Tobin�s Q investment model; in this case the
Euler and equilibrium equations describe the optimal investment policy of a
representative �rm. They �nd evidence of bubbles in the US and in Japan2.

Blanchard et al. (1993) and Bond and Cummins (2001) ask whether
deviations of equity prices from fundamentals can be responsible for the
typically poor empirical performance ofQ investment equations. Both papers
compare a stock market measure of Q with one computed on the basis of
fundamentals. Blanchard et al. (1993) use annual aggregate US data and
�nd that, if the equation contains a "fundamental Q" based on pro�ts, the

2These tests have some limitations. Any misalignment other than a rational bubble
causes the failure of both the Euler and the equilibrium equation, which in theory in-
validates the procedure. An exponential rational bubble would on the other hand a¤ect
the distribution of the test statistic and possibly make the test inconsistent (West (1987),
Chirinko and Shaller (2001)). Finally, the procedure may fail to detect bubbles if these
are completely uncorrelated with fundamentals.
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marginal explanatory power of the market-related variable is negligible. The
conclusion is that misalignments are small and/or �rms ignore them. Bond
and Cummins (2001) use data on a panel of American �rms, and measure Q
relying on published earnings forecasts; this variable appears to be a su¢ cient
statistic for investment and delivers plausible estimates of the adjustment
cost parameters. The authors infer that the Q model is correct, but its
parameters cannot be identi�ed using stock market data because share prices
depart persistently from their fundamental level.
Sarno and Taylor (1999) show that, if there is no rational bubble, the log

dividend-price ratio and the log ex post return must be either stationary or
cointegrated (that is, time-variation in returns may imply the failure of the
�rst condition, but not of the second). They analyse monthly stock market
data for eight East Asian countries over the nineties; non-stationarity and
lack of cointegration cannot be rejected for any of them, suggesting that asset
prices were bubbly at the outset of the 1997 crisis.

It is also possible to test a speci�c bubble parametrisation. Flood and
Garber (1980) develop a test for a monetary model of the German hyperin-
�ation considering a deterministic bubble growing at a constant rate. The
idea is to test the signi�cance of an exponential time trend in a reduced-
form in�ation equation. The no-bubble hypothesis is not rejected, but the
procedure raises some methodological issues (Flood and Hodrick (1990)); in
particular, because of the explosive regressor the authors�statistical infer-
ence cannot rely on the standard asymptotic distribution theory. Flood et
al. (1984) replicate a similar analysis exploiting a cross-sectional dimension
to by-pass this issue, and reject the null; the problem in this case lies with
the sample size, as only three simultaneous hyperin�ations are considered.
In Froot and Obstfeld (1991) the bubble is a power of the contemporaneous
dividend, which is assumed to follow a logaritmic random walk. The bubble
is thus completely deterministic and it is "intrinsic" in that all of its vari-
ability stems from economic fundamentals. Using aggregate annual US data
up to 1988, the authors �nd that the price-dividend ratio is indeed positively
correlated to some power of the dividend. This paper is discussed in greater
detail in section 5.

Finally, a few papers introduce a parametric bubble process in a state-
space model, as we do here. The bubble, a non-observable state variable,
can then be estimated by maximum likelihood through a Kalman �lter pro-
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cedure. Burmeister and Wall (1982) pioneered this technique on the German
hyperin�ation data, Wu (1995) and Elwood et al. (1999) apply it to exchange
rates; Wu (1997) and Chen et al. (2001) use it to analyse the US equity mar-
ket. Wu (1997) assumes a constant discount factor and models prices using
Campbell and Shiller�s (1988) log-linear approximation, �nding signi�cant
evidence of bubbles. Chen et al. (2001) assume that the discount factor is
driven by an autoregressive risk premium and linearize the price around the
mean discount factor; they do not reject the no-bubble hypothesis. These
two papers are clearly close in spirit to ours, and they are discussed more
extensively below.

3 A state-space formulation for the price of
a share.

This section introduces a linear approximation for a standard present-value
equity price formula with time-varying discount factor, and discusses the use
of the approximation as a building block for a state-space formulation of
the price process. The main references are Poterba and Summers (1986),
that �rstly proposed the approximation3, Campbell and Shiller (1988), that
introduced an alternative well-known logaritmic formula, and �nally Chen et
al. (2001) andWu (1997), where these approximations are used to investigate
equity price bubbles. It is well known after Lucas (1978) that, under risk
neutrality, the current price of a share is the discounted value of the stream
of expected dividends it will generate in the inde�nite future:

P ft = Et

1X
i=0

�i+1Dt+i (1)

(the superscript f stands for "fundamental"). It has been argued that the
assumption of a constant discount factor � is a straightjacket to be avoided.
A more general alternative is given by the following formula:

P ft = Et

1X
i=0

 
iY
j=0

(1 + rt+j + �t+j)
�1

!
Dt+i (2)

3Analogous formulae appear in Shiller (1981), Abel and Blanchard (1986), West (1987).
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The discounting is based here on a time-varying factor driven by the
dynamics of a risk-free rate of return rt+j and a risk premium �t+j. Equation
(2) is the no-bubble forward solution for the price of a share satisfying the
condition (EtPt+1�Pt)=Pt+Dt=Pt = rt+ �t; if no assumption is made about
the terms on the right-hand side, this is of course a mere accounting identity
without a precise economic meaning. Poterba and Summers (1986) assume
a constant interest rate r and develop a �rst order Taylor approximation of
(2) around the mean risk premium

_
� � E�t. A more �exible model can

be obtained by using a bivariate approximation. Assume that the safe rate
and the premium have a �nite unconditional mean E(rt; �t) � (�r; ��). The
existence of this moment is crucial: none of the equations below holds if,
for instance, one of these variables is not covariance-stationary. If the mean
exists, we can de�ne an "average" discount factor4 � � 1=(1 +

_
r +

_
�). A

�rst-order Taylor approximation of P ft (Dt+i; rt+i; �t+i) around P
f
t (Dt+i; �r; ��)

delivers the following equation:

P ft ' PLt +Rt + At (3)

where:

PLt �
1X
i=0

�i+1EtDt+i (4)

At �
1X
i=0

("
��i+1

1X
k=0

�k+1EtDt+i+k

#
(Et�t+i �

_
�)

)
(5)

Rt �
1X
i=0

("
��i+1

1X
k=0

�k+1EtDt+i+k

#
(Etrt+i �

_
r)

)
(6)

Details on the derivation and the assumptions under which we can expect
it to be accurate can be found in the appendix. The �rst term has been
named PLt because it represents in a sense a "Lucas�price" - the dividend
stream discounted on the basis of a constant factor �. The second and third
terms show how expected deviations of risk premium and interest rates from
their equilibrium values in�uence today�s equity valuation. The fact that
At and Rt contain products between dividends and deviations of �t and rt

4Because of the non-linearity of the relationship, this does not coincide with the un-
conditional mean of the stochastic discount factor - hence the inverted commas.
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from their means has a natural interpretation: the impact on today�s price
of an expected change in the discount factor at any future date depends on
how big is the cash�ow to be discounted from that date onwards. If for
instance agents believe that dividends will be zero after t + i�, for all i > i�
the expression in square brackets is zero and the corresponding terms drop
out of At and Rt: the price of the share today is thus independent of any
expected movement in the discount factor after t+i�. If the misalignmentMt

is de�ned residually as the non-fundamental price component, we can write:

Pt � P ft +Mt ' PLt +Rt + At +Mt (7)

This is a candidate for the measurement equation in the state-space
model. The question is whether the right-hand side terms provide a set
of suitable states.

PLt does not pose particular problem. As Hansen and Sargent (1980)
�rstly showed, if Dt � AR(q) then PLt will be itself a linear function of q lags
of the dividend. By vectorising the autoregressive Dt process into a VAR(1)
of dimension q, the �rst block of states can be written as follows:0BB@

Dt+1

Dt

:::
Dt�q+2

1CCA =

2664
�0
0
:::
0

3775+
2664
�1 �2 ::: �q
1 0 ::: 0

::: :::
0 ::: 1 0

3775
0BB@

Dt

Dt�1
:::

Dt�q+1

1CCA+
0BB@
"t+1
0
:::
0

1CCA (8)

Hansen and Sargent�s result implies PLt = c0(�; �)+
Pq

i=1 ci(�; �)Dt�i+1 ,
where each ci is a known function of �i i = 0; :::; q and �.

At and Rt are less straightforward. Chen et al. (2001) show that At (Nt in
their notation) follows an AR(1) process with a time-varying intercept and an
innovation that is a complicated function of conditional moments of Dt+i and
�t+i. Since an analogous equation holds for Rt, one possibility is to model
At and Rt as non-observable state variables. However, this procedure fails
to impose some cross-equation restrictions and introduces two error terms
that are well-behaved only under extra assumptions on the data-generating
process. Again, a discussion of these issues is presented in the appendix. The
next section shows that fortunately, despite the apparent cumbersomeness of
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equations (5) and (6), Rt and At turn out to be reasonably simple functions
of Dt; rt and �t in a range of economically interesting cases. Therefore, the
system can be directly speci�ed in terms of dividends, interest rates and risk
premia without introducing any further variable.

As far as Mt is concerned, a completely agnostic approach would require
not taking a stance on the nature of the misalignment. On the other hand,
if Mt is simply considered part of the price equation error term, the occur-
rence of a serially correlated rational bubble could invalidate the model. The
solution is to allow for both a rational bubble and a purely random devia-
tion from fundamentals: Mt = Bt + nt, where n denotes a "noise" satisfying
E(nt) = 0 for all t and E(ntns) = 0 for all t 6= s. The bubble is modelled as
a further non-observable forcing state:

Bt+1 = (1 + rt + �t)Bt + bt+1 (9)

(where bt is a serially uncorrelated error term). Equation (9) generalises the
standard parametrisation of a rational bubble to the case where the discount
factor, and consequently the growth rate of the bubble, changes over time.
This non-linearity makes the model more interesting because it allows the
examination of bubbles that roam about more irregularly than the usual,
monotonically explosive variable examined by constant discount models. As
we will show, there is no cost in terms of econometric complications as long
as rt and �t can be observed. Note that the presence of nt and bt implies
that both the measurement equation for Pt and the bubble are stochastic;
the Kalman �lter is run under the assumption that the contemporaneous co-
variance between the two error terms is zero. The nt factor can be interpeted
as the consequence of fads or measurement errors.

We conclude the section relating this work to the log-linear approximation
of Campbell and Shiller (1988). Both approximations are based on the de�ni-
tion of return. Campbell and Shiller (1988) start from (Pt+1+Dt)=Pt = 1+Rt,
take the logaritm of the identity and then compute a �rst order Taylor ap-
proximation around the mean of the log dividend-price ratio �t � dt�1 � pt.
By contrast, we write the ex ante return as the sum of a safe rate and a risk
premium, solve forward for the price level and then approximate the solution.
The formulae in Campbell and Shiller (1988) have a clear advantage in terms
of elegance and intuitive appeal; furthermore, they are linear in logaritms of
prices and dividends, so they can be combined with log-linear models that

10



seem to �t the data better and explicitly take into account the non-negativity
of these variables. Our defense on this issue is twofold. Firstly, equation (8)
is meant to be an empirical approximation of the process investors use to
forecast dividends rather than a description of the "true" process. Since
dividends are positive and increase over time, the probability (8) attaches
to the event fDt < 0g is small and approaches zero asymptotically; in this
respect, the di¤erence between modelling the dividend in levels or in log-
aritms is unlikely to be important. Secondly, the approximation and the
implied state-space system can be derived also under the assumption that
the log-dividend follows a random walk5.

There are two more substantial di¤erences. Campbell and Shiller (1988)
approximate around the mean log dividend-price ratio E(�t). If there is a
bubble, this moment does not exist: prices may inde�nitely diverge from
dividends, pushing the dividend-price ratio to zero and its logaritm to mi-
nus in�nity. Since the approximation is only valid under the null that there
are no bubbles, it should not be used to test for their existence. On the
contrary, the mean discount factor is well-de�ned independently of the exis-
tence of bubbles. A related issue is the accuracy of the linearisations. Camp-
bell and Shiller�s (1988) formula holds exactly if the dividend yield is con-
stant (�t = �), whereas ours holds exactly if the discount factor is constant
(rt + �t = r + �); the approximation errors respectively depend on the un-
conditional volatility of these variables. Poterba and Summers (1986) do not
discuss the accuracy of their formula; numerical analysis is probably the only
way to gain insight on the relative quality of the two approximations. How-
ever, the real interest rate is typically less volatile than the log dividend-price
ratio, and the nineties have seriously weakened the evidence on the station-
arity of the latter. Bubbles may or may not be responsible for this, but as a
matter of fact the yield appears to depart persistently from its mean level.
Hence, provided the risk premium does not vary much, it may be in principle
a good idea to approximate around the discount factor.

The second di¤erence has to do with the degree of generality of the mod-
els. Campbell and Shiller (1988) can only allow for one source of randomness
in discounting. Their paper analyses four possibile speci�cations for the dis-

5In this case the state equation would be speci�ed with log(Dt) and the measurement
equation would contain an exponential term Dt = e

log(Dt); again, the non-linearity can be
handled easily because the dividend (or its logaritm) is an observable state.
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count rate, respectively based on a constant, the real return on short-term
debt, the growth rate of real aggregate consumption and the variance of stock
returns. In all cases, either the safe return or the risk premium (or both) are
constant; this is unavoidable, because the equation only contains the overall
discount factor. With the approximation used in this paper interest rates
and risk premia can be modelled separately. Since safe return and risk pre-
mium are fundamentals that move under the in�uence of di¤erent forces, the
development of econometric frameworks where they can be modelled inde-
pendently is an important enterprise. The hope is that this work will give a
contribution in that direction, despite the fact that in the simple application
presented in the next section, the premium is again assumed to be constant6.

4 A tentative model.

Equations (4)-(6) and (9) may be regarded as the basis for the speci�cation
of simpler pricing models. The structure of each speci�c model will depend
on the assumptions we are willing to make on dividends, interest rates and
risk premia, which in turn have to be consistent with the dataset at hand.
The application proposed here is designed for a set of low-frequency (possibly
annual) aggregate data. For the time being, ignore the bubble process and
consider the case where:

i. Dt = �Dt�1 + "t
ii. rt = �0 + �1rt�1 + �t
iii. �t = �

Dividends are expected to grow at a constant rate, the interest rate follows
an autoregressive process of order one and the risk premium is constant; "t
and �t are zero-mean, serially uncorrelated disturbances. These assumptions
are discussed in the appendix; here we just note that the analysis has the
same basic implications if (i) is replaced by the commonly used assumption
that log(Dt) follows a random walk, and that (iii) could also be augmented
by an error term without consequences, because all we need is a process for
which the unconditional mean is also the best conditional predictor at all
horizons (Et�t+i = E�t = �). With � > 1, two su¢ cient conditions in order

6If a simpli�cation has to be introduced, a constant risk premium is in our view more
appropriate than a constant safe rate of return. In the appendix we discuss this choice
together with the alternative proposed by Chen et al. (2001).
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for the series of conditional expectations in (4), (5) and (6) to be de�ned are
�� < 1 and j�1j < 1. Under these assumptions we have EtDt+i = �

iDt and
Et(rt+i� �r) = �i1(rt� �r), with �r = �0=(1� �1), which substantially simpli�es
the three equations:

PLt =
�

1� ��Dt (10)

Rt =

�
�0

1� �1
�2

1� ��
1

1� ���1

�
Dt �

�
�2

1� ��
1

1� ���1

�
Dtrt (11)

At = 0 (12)

It is clear now that the dynamics of Rt are dictated by those of the
underlying forcing states Dt and rt, and that there is no need to specify a
transition equation for this variable. The transition equation (8) is replaced
by (i) and, using the expressions above and collecting the two Dt terms, the
price equation (3) becomes:

P ft ' �

1� ��

�
1 +

�0
1� �1

�

1� ���1

�
Dt �

�
�2

(1� ��) (1� ���1)

�
Dtrt

� c0Dt + c1Dtrt (13)

This equation has two simple implications. The �rst one is that the mean
price-dividend ratio also depends on the parameters of the process driving
the discount factor: E(P ft =Dt) = c0 + c1�r. A simple algebraic manipulation
shows that, for positive values of �0 and �1, this mean value is the product
of the coe¢ cient implied by a constant discount model (�(1 � ��)�1) by a
number larger than one. The di¤erence between the two is small as long as
the mean safe rate �r is small. More importantly, dividend and interest rate
interact. The interaction e¤ect has a negative sign, meaning that coeteris
paribus an increase in rt depresses prices, and its magnitude depends on �1,
the persistence of the innovations in the interest rate process. If �1 is large, a
positive shock to rt is followed by a prolonged period of high returns and low
discount rates, and this is re�ected in a strong negative correlation between
price and interest rate at time t. It is an interesting result, because basically
the equation contains an "extra" term that depends on the contemporaneous
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dividend and, contrary to the intrinsic bubble of Froot and Obstfeld (1991),
does not have a speculative nature. The equation can be re-cast for the
price-dividend ratio:

Pt
Dt

= c0 + c1rt + n
�
t (14)

where n�t = nt=Dt. Note that the system given by (i),(ii) and (13) imposes
two non-linear restrictions on �. We may now reintroduce the non-observable
bubble by embedding the price equation into a fully speci�ed state-space
system:

Pt =
�
c0 c1 1

� �
Dt Dtrt Bt

�0
+ nt (15)

0@ Dt

rt
Bt

1A =

24 0
�0
0

35+
24 � 0 0
0 �1 0
0 0 (1 + rt�1 + �)

350@ Dt�1
rt�1
Bt�1

1A+
0@ "t
�t
bt

1A (16)

The system has one measurement variable (Pt) and three state variables,
two of which (Dt; rt) are observed. The measurement equation can alter-
natively be speci�ed in terms of the price-dividend ratio by simply diving
through by Dt. In either case, the system contains two non-linear elements:
one in the measurement equation (either a product or a ratio of variables)
and one in the transition equation for the bubble (because of the time-varying
rate of growth). These do not pose particular problems because Dt and rt
are observable, i.e. they are known with certainty at time t; and the transi-
tion matrix is diagonal. Another way of looking at it is that, since the only
hidden state is Bt, we may simply formulate a system of a price equation and
a bubble equation, considering Dt and rt "exogenous"; such a state-space is
conditionally linear and it allows consistent maximum likelihood estimation
of the parameters and minimum mean-squared error �ltering of the bubble
(Harvey (1989)). An advantage of estimating a two-equations system for
Pt=Dt and Bt is that no assumption has to be made on the distribution of
the error term in the dividend equation; the cost is clearly that it is not
possible to impose the restrictions on the ci coe¢ cients.
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4.1 Standard&Poor companies.

This section analyses a dataset containing annual observations on Cowles-
Standard&Poors quoted companies starting from 1871. This data has been
used in many empirical studies of the US stock market, so the results dis-
cussed here can be directly related to a large present-value pricing literature7.
The estimation of (14) relies on the exogeneity (at least in a weak sense)

of rt, which is taken to be the one-year return on government debt de�ated
by the consumer price index8. It is also central to the analysis that changes in
the growth rate of the Standard&Poor dividend are unpredictable9. Unless
otherwise speci�ed, the estimates are obtained using data on the 1900-1995
period; this choice is due to the fact that the composition of the portfolio of
shares becomes more restrictive as one goes further back in time, and the last
years of the XX century deserve special attention. The price equation tends
to have serially correlated residuals (e.g. Froot and Obstfeld (1991), Dri¢ ll
and Solá (1998)); this is accounted for by modelling an AR(1) error term10.
For the basic form of (14), the least squares estimates are the following:

7Precise data de�nitions are given in the appendix. The data can be downloaded from
Robert Shiller�s web site at Yale (http://www.econ.yale.edu/~shiller/data.htm), and is
analysed for instance in Shiller (2000).

8A 2SLS estimation suggests that Pt=Dt does not enter the rt equation. Hence, rt is
weakly exogenous in the system (ii)-(14) as long as E(�tn

�
t ) = 0. This is tested using the

LM procedure proposed by Engle (1984). The test is run by augmenting (14) with the
residual �̂t obtained from (ii). The residual is insigni�cant at the 10% level, so the null
cannot be rejected. The plausibility of an AR(1) forecasting equation for rt is analysed
by running Granger-causality tests. These suggest that (log) prices and dividends do not
predict the real rate; details are available on request.

9This assumption, as most random-walk models, should be considered at best an ap-
proximation. Three pieces of evidence suggest that it is a reasonable one for our data.
Firstly, the BDSL test of Brock et al. (1996) does not reject the null of Dt=Dt�1 being an
i.i.d. variable. Secondly, we �nd that log(Pt) and log(Dt) cointegrate and that the latter
does not adjust to the equilibrium (though these results are not robust across samples and
VAR speci�cations). Finally, lags of log-prices and interest rates are jointly insigni�cant in
a forecasting equation for the log-dividend. These results are analogous to those in Froot
and Obstfeld (1991). All tables are available on request.
10The autoregressive error term may capture both noise and bubbles, especially because

the last, apparently explosive observations are excluded from the sample. At this stage we
are simply testing the implications of the linearized model without discriminating between
di¤erent types of misalignment.
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a. P spt
Dsp
t

= c0 +c1rt +nt; nt � AR(1)
23:7� �25:2�

(The superscript sp stands for Standard&Poors). Asterisks denote sig-
ni�cance at the 5% level. The prediction that rt has a negative impact on
P spt =D

sp
t is not rejected; with c1 = �25, a four percentage points increase in

the real rate implies a one unit decrease in the price-dividend ratio. As far
as the intercept is concerned, in Froot and Obstfeld (1991) estimates range
more or less from 14 to 16.5, while Dri¢ ll and Solá (1998) obtain �gures of
15.01 for the "low-mean" state and 17.97 for the "high-mean" state. The
estimate above is larger, probably because of sample di¤erences. Do the
restrictions make sense in terms of the underlying discount factor? With
� = 1:02, �0 = :02, �1 = :33 (obtained from univariate models for Dsp

t and
rt), the estimated ci coe¢ cients imply a � between .93 and 1.04 - an ac-
ceptable result once sample variability is taken into account. If we make the
further assumptions that the innovations (nt; "t; �t) are approximately nor-
mally distributed, we can estimate the trivariate system by Full-Information
Maximum Likelihood and test the restrictions more formally. Table 1 reports
FIML estimates for the restricted and unrestricted model. The restricted sys-
tem gives �̂ = :9411; the likelihood ratio statistic is about .10, well below any
conventional signi�cance level, so the restrictions on c0 and c1 are not re-
jected. Normality is of course a strong assumption, and in the case of "t and
nt it can only be interpreted as an approximation to the true distribution
because dividend and price-dividend ratio cannot be negative. Nevertheless,
the estimate of � and the extremely low value of the likelihood ratio statistic
indicate that model and data are broadly consistent.

Equation (a) performs well in all the standard speci�cation tests, display-
ing normal i.i.d. residuals, and it is qualitatively robust to subsampling in
the 1870-1995 period; in fact, c1 is negative and signi�cant even if the 1995-
2002 years are included, but in this case the model fails most speci�cation
tests. As a further check on the robustness of the estimates, we also consider
two expanded versions of the price-dividend ratio equation:

11Note that the mean one-period discount factor is E(1 + rt + �)�1 � Ef(rt), whereas
� � (1 + E(rt) + �)�1 = f(E(rt)). Since f is convex, by Jensen�s inequality � � Ef(rt);
in other words, the actual one-period expected discount rate is above �.
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b. P spt
Dsp
t

= c0 +c1rt +c2�P
sp
t�1 +c3�D

sp
t�1 +c4

P spt�1
Dsp
t�1

+nt

23:7� �25:9� :0 �:0 :87�

c. P spt
Dsp
t

= c0 +c1rt +c1(D
sp
t )

2:61 +nt; nt � AR(1)
17:5� �22:3� :01�

Equation (b) simply includes a lag of the price, the dividend and the ratio
of the two; (c) is an attempt to incorporate an "intrinsic bubble" à la Froot
and Obstfeld (1991)12. Asterisks denote again signi�cance at the 5% level;
neither the extra lags nor a power of Dsp

t swamp the interest rate e¤ect: c1
remains negative and signi�cant.
The estimates are encouraging, in the sense that the approximation and

the assumption on the structure of the discount factor prove to have some-
thing to say on the behaviour of P spt independently of the stance one takes on
the existence of speculative bubbles. In particular, the model rationalises the
negative relationship between interest rate and price-dividend ratio found in
the data, and it does it in a way which is consistent with plausible values of
the underlying average discount factor.

The remainder of this section examines the contribution of the bubble
to the explanation of the price pattern. Some estimates for the unrestricted
"reduced" model, where P spt =D

sp
t is the measurement variable and Bt the

hidden state, are presented in table 2 and �gures 1 to 4. We report results
obtained with two samples, 1900-1990 and 1900-2002. Again, the inclusion of
the 1871-1900 period implies only marginal changes, the most interesting of
which is an increase in the signi�cance of the interest rate term. This is clearly
not the case for the last decade, that stretches the model to its limits. Each
observation after 1995 pushes the estimated average risk premium up, and
the estimate is as large as 11% when the full sample is used; for this reason
we also report the estimates obtained imposing � = :0_613. Furthermore, the
12The exponent 2:61 is taken from table 3 on page 1201 of Froot and Obstfeld (1991);

results are not sensitive to this choice. We further elaborate on the intrinsic bubble model
in section 5.
13As LeRoy (2004) stresses, the existence of rational bubbles cannot explain the equity

premium puzzle of Mehra and Prescott (1985). The excess return on equity has been
very high in the past decades, and this is puzzling independenly of whether the price level
contained a bubble or not. Note also that as long as � > 0 the bubble is explosive and �̂
has a non-standard distribution; the signi�cance levels reported in table 2 are valid insofar
as this is approximately normal.
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residuals corresponding to the last observations are very large: the behaviour
of the price index after 1998 is somewhat exceptional even after accounting
for a near-exponential bubble. Nevertheless, the analysis delivers some clear
conclusions. The parameters of the P spt =D

sp
t equation, including the interest

rate term, are signi�cant, rightly signed and of a reasonable magnitude. The
pattern of the bubble is realistic: it remains latent during the �rst 50 years
(in fact, it is also insigni�cantly di¤erent from zero throughout the XIX
century), and it drives prices up in the 60�s and in the second half of the
90�s14. For these two periods, and notably for the second one, the estimated
bubble is signi�cant well above the 5% level independently of whether the
risk premium is restricted or not15. It is interesting to compare the results
to Wu (1997), where the bubble is estimated by Kalman-�ltering under the
assumption of a constant discount factor. The bubble estimated by Wu
follows a remarkably similar path, and between 1960 and 1970 it accounts
on average for 40-50% of the price level; our estimates suggest a �gure of
30-40% (more details are given in table 5). The type of time-variation in
the discount factor assumed in this model reduces the estimated size of the
bubble by roughly ten percentage points.
As a further robustness test, the model was also estimated expanding

the measurement equation to include alternatively a lagged price-dividend
ratio and an "intrinsic bubble" (again with a constant exponent). The extra
terms are generally signi�cant and the lagged price-dividend ratio reduces
the size of the bubble; however, Bt remains highly signi�cant in both cases
and follows a very similar path. Besides, the lagged price-dividend ratio is
completely ad hoc and its presence in the equation is even more di¢ cult to
justify than that of the bubble itself. The residuals do not display any clear
pattern. Though, the diagnostics in table 2 show that the last observations
weaken the evidence that the "noise" is an i.i.d. normal variable; this is
partially due to the model�s inability to anticipate the burst of the bubble,

14There is an issue with the sign of the price bubble. Negative bubbles are usually
ruled out because they imply a non-zero probability of prices becoming negative in the
future. However, temporary undervaluation due to a short-lived negative bubble appears
to be a realistic possibility (Wu (1997)). Our estimation procedure does not impose a
non-negativity constraint on the bubble process.
15The error bands shown in the �gures 2 and 4 quantify the "�lter uncertainty" ignoring

the "parameter uncertainty" (Hamilton (1994)); since the system is very parsimonious
and the parameters are estimated with good accuracy, this is unlikely to be a serious
shortcoming.
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which generates inaccurate forecasts for 2001 and 2002.

What to make of these results? We already noted that there is a long and
articulated debate on the theoretical and empirical plausibility of rational
bubbles. A few recent empirical works provided ground for scepticism by
showing that fundamentals can explain a lot depending on how they are
measured and modelled. Wright (2004) adjusts the dividend series by netting
out new issues and buybacks and shows that the adjusted dividend yield
behaves more regularly, displaying no negative drift in the last decade of
the century. Using ordinary S&P data and assuming constant discounting,
Dri¢ ll and Solá (1998) show that a dividend process switching between a
"bad" state (low mean-high variance) and a "good" state (high mean-low
variance) also goes a long way towards explaining movements in the price
index.

More generally, it is still possible (and probably it will always be) to
object that any �nding of speculative price components in the data can be
potentially eroded or annihilated by modelling a more complex stochastic
discount factor and/or dividend process. However, two points are worth
stressing. Firstly, the nineties are unlikely to �t comfortably in the frame-
work proposed by Dri¢ ll and Solá (1998), who use data up to 1987. Since
the behaviour of the dividend series does not change dramatically after that
year, on the basis of a cursory look at the data one is tempted to conclude
that a bubble is indeed a plausible explanation for what happened after 1995.
The compatibility of the bubble with the history of the market in the pre-
vious decades obviously reinforces this view. Secondly, previous attempts to
estimate share price bubbles have been criticised because of their reliance on
the assumption of a constant discount factor. This paper shows that rational
bubbles are in this sense quite resistant, and they survive the introduction of
a simple but realistic stochastic factor. Time variation in the latter explains
an extra portion of the volatility of the price (in our case through the inter-
est rate term), but it also implies that a potential bubble will follow more
complex dynamics. Interestingly, the net outcome of these two factors on
the Cowles/S&P data is such that the occurrence of a near-exponential price
bubble cannot be ruled out.
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4.2 The non-�nancial corporate sector.

A dataset containing annual observations for the whole non-�nancial US cor-
porate sector from 1900 to 2000 is available from Steven Wright�s web page
(www.econ.bbk.ac.uk/faculty/wright). All data for the post-World War II pe-
riod come from the Flow of Funds for the United States. For the pre-war
period, the aggregate dividend series (Dt) is obtained by assembling data
from three di¤erent sources and the price index (Pt) is derived assuming the
existence of a stable relationship between the dividend yield or the return on
the sector and those on the more restricted Cowles/S&P index. Sources and
adjustments are described in detail in Wright (2004). Wright also computes
an "adjusted" aggregate dividend series by subtracting to the ordinary div-
idend all net new issues, namely new issues minus buybacks; the adjusted
variables (Da

t ; P
a
t ) basically describe an hypothetical market where the num-

ber of shares remains constant at the 1945 level16.

Figure 5 plots the price-dividend ratio for S&P companies together with
the ordinary and adjusted ratios for the whole non-�nancial sector. Clearly,
both the expansion of the set of companies and the adjustment for net new
issues have a signi�cant impact on the variable. The pattern of the non-
adjusted sector ratio is qualitatively similar to the S&P benchmark; the
main di¤erence is that the peak in the late nineties is much smaller, leav-
ing less room for rational bubbles. As Robertson and Wright (2003) and
Wright (2004) document, the consequences of adjusting for equity issues and
buybacks are dramatic. The adjusted ratio has no clear upward trend in the
second half of the sample, and it displays "fat tailed volatility"; in particular,
two large spikes in the late twenties and early seventies (in coincidence with
large net equity issues) complicate the statistical modelling of the variable.
The adjusted ratio is the only one for which the null hypothesis of a unit
root is con�dently rejected by the standard augmented Dickey-Fuller tests.

Preliminary analyses involve checking the adequacy of (i) and the weak

16Robertson and Wright (2003) and Wright (2004) argue that this "broad" dividend
is theoretically more appropriate than the usual, "narrow" dividend. Others (e.g. Cole
et al. (1996)) express doubts on the equivalence between dividends and repurchases.
According to LeRoy (2004), the two variables simply describe di¤erent porfolio strategies,
either of which may have a bubble or not. But arguably a representative agent holding a
representative share can only implement one such strategy, and this is linked to the broad
dividend measure.
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exogeneity of rt in the price-dividend ratio equation. Figure 6 shows the
growth rates of ordinary and adjusted dividends (Dt=Dt�1, Da

t =D
a
t�1). A

regression of Dt=Dt�1 on a constant delivers serially uncorrelated residuals
and an estimated dividend growth rate of about 3%. The growth rate of
the adjusted dividend is more volatile and it peaks above 100% three times
over the sample; in this case, a simple regression of the growth rate on a
constant generates serially correlated and heteroscedastic residuals. How-
ever, the correlation is signi�cantly mitigated if the extreme observations are
ignored or the innovation is modelled as conditionally heteroscedastic (via
an ARCH(1)). Furthermore, a BDSL test (Brock et al. (1996)) shows that
the null of the observations being i.i.d. cannot be rejected at any reasonable
signi�cance level. Hence, we proceed on the assumption that agents expected
both the ordinary dividend and the broad dividend, or net cash �ow, to grow
at a constant rate17.
The weak exogeneity of rt for the parameters of the price-dividend equa-

tion is again tested following the procedure of Engle (1984) (see footnote 10).
Weak exogeneity holds in the case of P at =D

a
t but not in the case of the non-

adjusted ratio Pt=Dt; for the latter, the equation is thus estimated by a Two-
Stage Least Square procedure using as instruments rt�1 and Pt�1=Dt�1

18.

Tables 3 and 4 report estimates of equation (14) for the adjusted and non-
adjusted datasets. The equation is estimated on the whole sample 1900-2000,
the period 1900-1990, that excludes the last anomalous years, and the period
1900-1970, that excludes the 1971 outlier and the oil shocks. The innovation

17There is no 5%-signi�cant cointegrating relationship between price and dividend in
either adjusted or non-adjusted data. Prices and interest rates do not in general Granger-
cause dividends. The only partial exception is the predictive power of log(Pt) in the
pre-war period; even in this case though the coe¢ cients are small, summing to about .05,
so the forecast does not change substantially when all price lags are omitted. We note that
the assumption that changes in the dividend growth rate are unpredictable is necessary
to obtain (13), but it has no direct implication for the statistical validity of the estimates
discussed below.
18The real rate rt is again the nominal return on one-year public debt de�ated by the

consumer price index, available from Robert Shiller�s website. Granger-causality tests
con�rm that the rt � AR(1) assumption is tenable, in that lags of the log-price and
log-dividend (both adjusted and non-adjusted) are jointly insigni�cant in a forecasting
equation for rt. About the 2SLS estimation, rt�1 and Pt�1=Dt�1must be included in the
instruments to achieve consistency in the presence of an AR(1) error term. Given the
nature of the rt process, further lags are likely to generate a small-sample bias. At any
rate, the sign and signi�cance of c1 is robust to alternative instruments choices.
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is again modelled as an AR(1) process; standard errors are computed using
the Newey-West (1987) correction in order to take into account any further
correlation and/or heteroscedasticity. The estimated c1 coe¢ cient is always
negative and of the same order of magnitude of the intercept c0, and it is
signi�cant at the 5% level in all cases but one. Two dummy variables are
used to capture the jumps of P at =D

a
t in 1929 and 1971 highlighted in �gure

5; these are possibly linked to the �nancial crisis and the collapse of the
BrettonWoods Agreements. In any case, the 1900-1970 subsample provides a
robustness check allowing to ignore at least one of the two spikes. Given that
the adjusted ratio does not trend upwards in the nineties, another check can
be made by estimating the equation on the 1975-2000 period - which again
delivers a negative and signi�cant c1 (results are not reported for brevity).
The estimates are stable, and in particular there is no evidence of structural
breaks in the years around the end of World War II.

Independently of whether the relevant fundamental is the dividend or a
more sophisticated cash �ow measure, the data is consistent with the view
that a safe one-year return augmented by a constant premium provides a rea-
sonable description for the discount factor. However, the measurement issue
is crucial when it comes to investigating the existence of speculative bubbles.
Figure 5 clearly suggests that the pattern of P at =D

a
t is incompatible with the

presence of an explosive price component. This conclusion is strengthened
by the fact that the estimated root for the autoregressive innovation is .67
for the 1900-1990 sample and .64 for the 1900-2000 sample.

In the case of Pt=Dt the picture is more ambiguous. The estimated root
for the innovation is .81 on the 1900-1990 sample and .86 if the last decade is
included, and the residuals display a clear upward trend in the last 5-6 years.
Unfortunately the usual state-space formulation cannot be used to measure
the bubble because of the endogeneity of rt. However, it is still possible to
gain some insight on the likelihood and magnitude of the bubble by means of
a small simulation; the Kalman �lter can be run �xing the values of c0 and
c1 so that the only free parameters are the risk premium and the variances
of the two error terms. Figure 7 shows three alternative estimates of the
bubble Btjt conditional on c0 and c1 taking the values suggested by table
3. The standard error bands (not reported) show that the bubble departs
signi�cantly from zero in the sixties and in the nineties. The similarities
with the Standard&Poor data are apparent. There is however an interesting
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di¤erence as far as the magnitude of the bubble is concerned. Table 5 shows
the portion of Pt that can be attributed to the bubble during the two decades
when this is signi�cant at the 5% level in both datasets; the non-�nancial
sector bubble is obtained here as a simple average of the three estimates
plotted in �gure 7. Both prices in�ate by 30-40% during the �rst surge of
the bubble. The situation is di¤erent in the nineties: the price of a non-
�nancial share increases by about 20% with a peak of 50% in 2000, whereas
for an S&P share the average price increase is around 40% and the 2000
maximum is +73%. All these �gures are obviously subject to some margin
of error, but this is likely to be roughly of the same size for the two datasets
and it is presumably unrelated to the sample period. Hence, the emergence
of such a large discrepancy in the decade 1990-2000 is a reliable signal of a
substantial di¤erence between the true underlying bubble processes.

As long as we stick with the traditional de�nition of dividends, it seems
hard to exclude that an exponential speculative bubble may have pushed
share prices up at least twice in the last century, and most notably during
the 90�s. At the same time, though, the dimensions of the presumed bubble
depend signi�cantly on how broad is the set of �rms considered. In a way,
even a "broad market index" like S&P500 is not entirely representative of the
whole non-�nancial US sector: overvaluation is quantitatively less important
when looking at industry-level data.

If one accepts the idea that the Miller-Modigliani theorem has to be taken
more seriously, and that net share repurchases are equivalent to dividends,
the picture changes substantially. In this case, a more technical analysis con-
�rms what a qualitative assessment of the data already suggests - namely
that bubbles do not exist. Since there is again evidence of time-varying dis-
counting of the type discussed in the previous sections, the approximation
still gives some guidance in investigating price dynamics; in particular, it
provides a more articulated de�nition of "fundamental price" than that im-
plied by constant discount models. The di¤erence is that, on adjusted data,
the deviations of actual prices from this benchmark �t better the concept of
short-lived fads or generic noise than that of a proper speculative bubble.
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5 Intrinsic or extrinsic?

Among the bubble-based explanations of the behaviour of the American stock
market in post-war years, one that has received signi�cant attention is the
already mentioned intrinsic bubble studied by Froot and Obstfeld (1991).
They de�ne bubbles as "intrinsic" when "they derive all of their variability
from exogenous economic fundamentals and not from extraneous factors"
(page 1). Note that according to this de�nition the bubble examined in the
previous section does not qualify as intrinsic: it depends on fundamentals
because the rate of growth is a function of rt, but, due to the presence of
the bt shocks, it also introduces an extraneous source of variability in the
price process. Froot and Obstfeld derive a simple parametrisation by which
the bubble is a power of the dividend itself. They examine the 1900-1988
period using Standard&Poors dividend and price series, and show that the
non-linearity of the price-dividend relation is not rejected by the data. The
objective of this section is to replicate the analysis of Froot and Obstfeld
(1991) on a more comprehensive set of data: how does the intrinsic bubble
fare in the 90�s? And what happens when the whole non-�nancial industry
is considered, or the dividend series is adjusted by netting out issues and
buybacks?

Froot and Obstfeld (1991) consider the case where the instantaneous rate
of interest is constant (r) and the log dividend follows a random walk: dt+1 =
�+dt+�t+1; with �t+1jt � N(0; �2). The focus is thus on the following period-
by-period equation: Pt = e�rEt(Pt+1 + Dt). The authors show that, if no
transversality condition is imposed, the price equation has a forward solution
of the type Pt = kDt + cD

�
t , where k � (er � e�+�2=2)�1, c is an arbitrary

constant and � is the positive root of �2�2=2 + �� � r = 0. An attractive
feature of this approach, not shared by the exponential bubble, is that it can
explain the high sensitivity of prices to �rms�dividend announcements. The
empirical analysis focusses on equation (13), page 1198:

Pt
Dt

= c0 + cD
��1 + �t;

where the error term �t is by assumption independent of dividends at all leads
and lags. Note that, since this equation is derived under the assumption that
the discount rate is constant, a direct comparison between the two bubble
speci�cations (intrinsic and exponential) is not straightforward. In other
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words, an equation like (b) on page 12, that contains both rt and D��1
t ,

cannot be given a rigorous theoretical interpretation.

As Froot and Obstfeld point out, a random walk can be considered at
best an approximation to the true process agents use to forecast dividends.
In particular, stock prices, which re�ect a broad (possibly the broadest) in-
formation set available at each point in time, may well contain information
on future dividends beyond that given by the current dividend. Obviously
this also applies to the discussion in the previous sections - our tests simply
show that an agent expecting the dividend to grow at a constant rate did not
commit gross, systematic mistakes over the sample period. When it comes
to estimating the equation above, though, the issue becomes critical in two
respects. Firstly, consistent estimation of c by OLS requires Et(�tjDt) = 0.
Secondly, Froot and Obstfeld conduct inference on c relying on the assump-
tion that �t is independently distributed of �t at all leads and lags: appendix
B of their paper shows that in this case the t statistic for the null hypothesis
ĉOLS = 0 is asymptotically normal despite the explosive regressor.

Independence between �t and �s for all t and s is admittedly a strong
assumption. It is possible though to extend Froot and Obstfeld�s discussion
and show that a 2SLS procedure where Dt is instrumented by its own lag
preserves both consistency of ĉ and asymptotic normality of the t statistic
under the less stringent assumption that �t is independent of past dividend
innovations �s (s = 1; :::; t � 1)19. Hence, the 2SLS estimate can be used to
control the behaviour of the OLS estimator. This seems sensible especially
in the case of the non-�nancial industry data, where there is no substantial
evidence of Granger-causality from prices to dividends (as in Froot and Ob-
stfeld�s series) but the exogeneity of the dividend is di¢ cult to assess because
cointegration tests do not yield clear results.

Table 6 expands the available evidence on the american intrinsic bubble.
For each of the three datasets (S&P, non-�nancial industry, adjusted non-
�nancial industry) the price-dividend ratio equation is estimated with and
without the 1990-2000 observations20. For the S&P data we report OLS

19The key point is that the moments
P
D2
t and

P
DtDt�1 have the same leading term,

so the asymptotic distribution of the t statistic does not change when Dt is replaced by
the instrument Dt�1. The discussion is omitted for brevity.
20All equations contain an AR(1) error term, as in rows 2 and 4 of table 3 of the original
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estimates: 2SLS estimates are very similar, which is consistent with both
Froot and Obstfeld�s assessment of the exogeneity of the dividend and our
own. For the other two datasets we report 2SLS estimates (OLS estimates
are signi�cantly di¤erent and economically meaningless).

The �rst row of table 6 is basically a replica of Froot and Obstfeld�s result:
with a positive and signi�cant c, prices become increasingly overvalued as
dividends rise, consistently with the model�s prediction21. The fourth row
shows that the model fails to explain the behaviour of the S&P price index
in the 90�s: when the 1990-2000 observations are considered, the intrinsic
bubble looses its signi�cance and the estimated root of the autoregressive
error jumps well above unity. If the nineties are to be explained by assuming
the existence of an explosive price component, an exponential process appears
to be a better choice than a power of the dividend.
Rows two and �ve test the intrinsic bubble hypothesis using non-adjusted

data for the whole non-�nancial sector. On pre-1990 data, the c coe¢ cient
is correctly (i.e. positively) signed, but it is estimated with a relatively large
standard error. When the whole sample is used, the estimated coe¢ cient is
positive and signi�cant at the 1% level. Furthermore, the unexplained serial
correlation appears in this case to be stationary, with an autoregressive root
of about .7. The estimate c = 4:79 is not entirely convincing, in the sense
that it implies a surprisingly high degree of "sensitivity" of the price to
the contemporaneous dividend, but the theory places no restriction on the
magnitude of this coe¢ cient. Finally, results for the adjusted series (rows
four and six) leave little room for ambiguity: c is far from any acceptable
signi�cance level in both samples, and wrongly signed in one of them.

The adjustment for new issues and buybacks is clearly as lethal for the
intrinsic bubble as it is for the exponential bubble; again, this is hardly

paper, and are estimated imposing the value of � implied by the estimates of �2, � and
r. Depending on the dataset and the sample period, � goes from a minimum of 1.29 to
a maximum of 2.81; Froot and Obstfeld compute � = 2:74. Sensitivity analysis con�rms
that the results are qualitatively robust to the value of �: If this is estimated concurrently
with the other parameters by a non-linear least squares procedure, the estimates are of a
similar magnitude but the standard errors tend to be large.
21Froot and Obstfeld note that the equation "does a better job" on post-war data

(p.1204). Indeed, a formal Chow test rejects the null hypothesis of structural stability
before and after 1945 at the 1% con�dence level. However, magnitude and signi�cance of
c remain unchanged when the pre-war period is ignored.
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surprising given the strong mean-reversion displayed by the adjusted price-
dividend ratio. As far as the non-adjusted data is concerned, it seems fair to
say that on the whole the intrinsic bubble performs worse than the exponen-
tial bubble studied in the previous sections. The two formulations are both
broadly compatible with price patterns between 1900 and 1990, but the fol-
lowing ten years provide a clear case for the exponential bubble. The growth
of the non-�nancial industry share price can be explained within Froot and
Obstfeld�s (1991) framework, even though this comes at the cost of a some-
what implausibly strong link between price and contemporaneous dividend.
But the rise in the S&P index is simply too large and sudden to be justi�ed
by this type of mechanism.

These �ndings cast some doubts on the overall plausibility of the intrinsic
bubble story. One would expect that, if there is a bubble of any type in the
industry-level data, this will also appear in market indices based on a large
set of �rms, such as Standard&Poor�s. This is the case for the exponential
bubble, but not for the intrinsic one. Furthermore, the bubble modelled by
Froot and Obstfeld is a deterministic function of the dividend and, as such,
it cannot pop and re-start at di¤erent points in time: the lack of signi�cance
of the intrinsic bubble in a period of widely aknowledged price misalignment
is in this sense particularly di¢ cult to justify. Of course one may argue that
prices contain both a permanent intrinsic bubble and occasional, stochastic
exponential bubbles, and that the latter swamp the former during their ex-
pansion phases. Albeit theoretically admissible, this possibility strikes us as
unrealistic.

6 Conclusion

Economists have been puzzled by stock markets for a long time, and recent
experiences in the US and elsewhere have revived debates dating back at
least to the eighties: how much can fundamentals explain? Are prices really
"too volatile"? Price misalignments, and rational bubbles in particular, are
a fascinating hypothesis, but one on which there is no consensus on either
theoretical or empirical grounds. In this paper we discuss a state-space model
that allows maximum likelihood estimation of share price bubbles conditional
on di¤erent assumptions on the stochastic discount factor. The bubbles are
also stochastic, and they grow at a time-varying rate given by the inverse of
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the one-period discount factor. The model is used to analyse three long series
of annual observations on the US, namely a Standard&Poors dataset, a non-
�nancial industry dataset, and an adjusted non-�nancial industry dataset
where the dividend is computed netting out new share issues and buybacks.
We assume that investors discount expected dividends on the basis of a safe
one-year return augmented by a constant risk premium.
This assumption �ts the data reasonably well: the price-dividend ratio

is negatively correlated to the contemporaneous real interest rate, and the
magnitude of this e¤ect is consistent with the interpretation we propose.
As far as misalignments are concerned, our estimates sketch the following
picture. The S&P price index was in�ated by rational bubbles twice in the
last century, in the sixties and in the nineties. This is also true for the price
of a non-�nancial company share, though the bubble of the nineties was
proportionally much smaller. Finally, there are no bubbles in the adjusted
share price; variation in the interest rate does not completely explain price
dynamics in this case either, but what is left resembles short-lived fads rather
than a bubble. Our work suggests two conclusions that should be of some
interest independently of the position one takes on the existence of rational
bubbles. The �rst one is that self-ful�lling bubbles and stochastic discounting
may coexist; in particular, bubbles are a possible explanation for the excess
volatility of prices over dividends and interest rates already documented in
the literature. The second one is that investigations of this type are very
sensitive to the way variables are de�ned; for a shareholder looking not just
at dividends but also at share issues and repurchases, the nineties were a
perfectly ordinary decade.

7 Appendix

7.1 Derivation of equation (3)

This appendix illustrates the derivation of the Taylor expansion. We stress
again that this is merely a bivariate extension of an approximation originally
used in Poterba and Summers (1986). De�ne the sequences frtg � rt; rt+1; :::
and f�tg � �t; �t+1; ::: and consider the following function22:
22We follow Poterba and Summers (1986) in letting the summation start in i = 0; the

implicit timing convention is that the contemporaneous dividend accrues to the time-t
buyer of the share.
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f(frtg ; f�tg) �
1X
i=0

 
iY
j=0

(1 + rt+j + �t+j)
�1

!
Dt+i (A1)

A �rst-order Taylor approximation of f in a neighborhood of (�r; ��) �
E(rt; �t) has the following form:

f(frg ; f�g) ' f(�r; ��) +

+

"
@f

@ frtg

����
(�r;��)

#
(frtg � �r)

+

"
@f

@ f�tg

����
(�r;��)

#
(f�tg � ��): (A2)

The computation of the �rst term is straightforward:

~PLt � f(
_
r;
_
�) =

1X
i=0

�
1

1 +
_
r +

_
�

�i+1
Dt+i �

1X
i=0

�i+1Dt+i (A3)

where � � (1 +
_
r +

_
�)�1: Because rt+j and �t+j enter f in the same way,

the partial derivatives of f with respect to these variables have the same
functional form. To derive it, note �rst that:

@f

@rt+i
= �(1 + rt+i + �t+i)�1

1X
k=0

 
i+kY
j=0

(1 + rt+j + �t+j)
�1

!
Dt+i+k

Consequently:

@f

@rt+i

����
(
_
r ;
_
�)

= ��i+1
1X
k=0

�k+1Dt+i+k

"
@f

@rt+i

����
(
_
r ;
_
�)

#
(rt+i � �r) =

"
��i+1

1X
k=0

�k+1Dt+i+k

#
(rt+i � �r)

The �rst-order Taylor term for frtg is given by the summation over i of
the equations above:
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~Rt �
"
@f

@ frtg

����
(
_
r ;
_
�)

#
(frtg �

_
r)

=

1X
i=0

("
��i+1

1X
k=0

�k+1Dt+i+k

#
(rt+i �

_
r)

)
(A4)

An analogous formula can be derived for ~At; the term involving the risk
premium. By the linearity of the expectation operator we can write:

P ft = Et [f(frtg ; f�tg)] ' Et
h
~PLt + ~Rt + ~At

i
= Et ~P

L
t + Et ~Rt + Et ~At (A5)

Hence, the only condition needed to derive (A5) is the existence of a
�nite unconditional mean for rt and �t. If Et ~PLt , Et ~Rt and Et ~At are equal
to PLt ; Rt and At as de�ned in (4), (5), and (6), we then obtain a bivariate
version of equation (4) of Poterba and Summers (1986). This requires further
assumptions on the processes generating dividends, interest rates and risk
premia.

A su¢ cient condition for Et ~PLt = P
L
t is the absolute summability of the

series:
P1

i=1Et
���iDt+i

�� < 1: This condition holds (or is assumed to hold)
for most common speci�cations of the dividend process. In the case of the
other two variables on the right hand side of (A5) the derivation is more
cumbersome, even though it does not require sophisticated mathematics. A
general discussion is beyond the scope of the paper; we brie�y comment on
the relationship between Et ~Rt and Rt in the following case:
Dt = �Dt�1 + "t; "t � N(0; �2");
rt = �0 + �1rt�1 + �t; �t � N(0; �2�); j�1j < 1;
8t : E("t�t) = ���;
8t 6= s : E("t"s) = E(�t�s) = E("t�s) = 0:
If �"� = 0, we obtain Et ~Rt = Rt. If �"� 6= 0, Et ~Rt also contains a

covariance term; it is possible to show that this is bounded by a multiple of
�"� itself, so it is �nite (despite the in�nite summation over i and k) and it
is "small" for "small" values of the contemporaneous covariance between the
innovations in Dt and rt. On the three datasets used in the paper, bivariate
systems for the growth rate of the dividend and the real interest rate deliver
�̂"� ' :003. Finally, as long as �"� is constant, ignoring the covariance term
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in Rt can at worst complicate the interpretation of the intercept of the price
equation but it has no impact on the dynamics. Since there is no evidence
of a time-varying conditional covariance, the result is quite reassuring. Of
course this point may become more delicate when modelling higher frequency
data. The equality Et ~At = At can be derived along the same lines insofar
as the underlying process for the risk premium �t has suitable properties.
Details on the derivation are available upon request.

7.2 Caveats on the state-space formulation

This section highlights some issues that should be taken into account when
considering further speci�cations and applications of the general state-space
model used in the paper. Chen et al. (2001) provides a good starting point
to clarify the risks connected to "assuming away" variation in one of the
components of the discount factor. Let us de�ne xt � �t+ rt and collect the
terms with the same index i in (3):

P ft '
1X
i=1

EtDt+i

(1 +
_
x)i

+
1X
i=1

@P ft
@xt+i

(Etxt+i �
_
x):

The authors assume rt = r and (�t+1 �
_
�) = �(�t �

_
�) + "t+1 , where

� � E(�t). What happens with a time-varying interest rate? Consider
the simple case where (i) (rt+1 �

_
r) = �1(rt �

_
r) + �t+1, (ii) �1 = � and

(iii) E(�t"s) = 0 8t; s. Then xt is itself an AR(1) process with root equal
to � and the state-space formulation of Chen et al. (2001) is statistically
correct, even though interpreting the estimation results is di¢ cult because
the �ltered state is xt and not �t as the authors claim. But these assumptions
are arbitrary: rt and �t need not be AR(1) processes; even if they are, there
is clearly no reason why they should have identical roots. Risk premium and
riskless return have to be modelled separately, and ideally the state-space
system should include an equation for each of them.

If a simplifying assumption is to be introduced, a constant premium seems
to be better than a constant interest rate. One obvious reason is that when
the empirical analysis is based on long low-frequency data a constant safe re-
turn is clearly counterfactual: we do not know if and how �t changed during
the last century, but we know for sure that rt moved continuously. Further-
more, rt typically displays a strong autoregressive pattern (this need not be
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the case for the risk premium), and ignoring it amounts to passing it to the
residuals. Finally, devicing an equation for �t is not a trivial task. Two routes
are available in the context of the state-space system. The �rst one, followed
by Chen et al. (2001), is to treat the premium as a further non-observable
state variable and simply postulate its process. This allows maximum likeli-
hood estimation of the pattern of �t. However, since it is di¢ cult to justify
the choice of any particular process for �t on theoretical grounds, we end up
appending to the model an arbitrary component. Furthermore, the estima-
tion becomes technically more problematic: in this scenario the Bt equation
contains a product between non-observables, so the model can only be esti-
mated using an approximate �ltering procedure that relies on a �rst-order
Taylor expansion of the transition equation (Harvey (1989)). Since the mea-
surement equation is itself the outcome of a linearization, this is clearly not
desirable. In Chen et al. (2001) this problem is avoided by assuming that
the bubble grows at a constant rate (1 + r + �), but this is inconsistent: a
price bubble cannot grow at a constant rate in a world were the discount
factor changes over time.

The alternative is to link the premium to some observable variable and
identify its generating process in the data. For instance, Poterba and Sum-
mers (1986) use the linear relationship between equity premium and variance
of equity returns derived by Merton (1973); they model �t as an AR(1) be-
cause in their daily dataset the variance is well described by this type of
process. On annual data, the variance of market returns does not display
clear autoregressive dynamics; if Merton�s (1973) equation is to be used, it
is necessary to think of more sophisticated processes. An interesting possi-
bility is to model the premium as a regime-switching variable. If �t has a
low-mean and a high-mean state, At has to be computed taking into account
the possibility of �t moving between the two in the future. The occurrence
of isolated, short periods of high volatility in the stock market may then help
explain high equity prices over long horizons. The implementation of this
idea is left for future research.

The dynamics of At and Rt also deserve a comment. Chen et al. (2001)
show that At follows by construction a process of this type:

At+1 = �
�1At + P

L
t (Et�t+1 �

_
�) + �t+1;
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�t+1 � �
1X
i=1

�i
1X
k=0

�k+1Et+1Dt+1+i+k(Et+1�t+1+i �
_
�)

+

1X
i=2

�i�1
1X
k=0

�k+1EtDt+i+k(Et�t+i �
_
�):

This can be derived by simply substituting the de�nition of At and At+1 in
(At+1 � ��1At) and rearranging the terms in an appropriate fashion. With
the bivariate approximation, an analogous equation also holds for Rt+1 once
�t is replaced with rt. The estimation procedure the authors follow relies on
the claim that Et�t+1 = 0 by the law of iterated expectations, and implicitly
assumes that �t is serially uncorrelated. For the case where Dt grows at
a constant expected rate and �t � AR(1), �t can be derived analytically
and it turns out that E(�t�t�1) 6= 0 unless further assumptions are made
on the innovations of these two processes. It is thus preferable to model the
conditional expectation of Dt+i+k, �t+i and rt+i explicitly and use (5) and (6)
to place restrictions on the price-dividend ratio equation. This strategy may
obviously be unattractive (or unfeasible) if Dt, �t and rt follow particularly
complicated processes.

7.3 Data sources and de�nitions.

All data come from two dataset that are available via the internet on, respec-
tively, Robert Shiller�s page (http://www.econ.yale.edu/shiller/data.htm) and
Stephen Wright�s page (http://www.ecob.bbk.ac.uk/faculty/wright). Below
we de�ne our variables in terms of each author�s codes; S and W indicate
the source.

r realR real commercial paper rate S
Psp realP real Cowles-S&P share price index S
Dsp realD real Cowles-S&P dividend per-share S
P sp/pc real non-�n. share price W
D (div/e)/pc real non-�n. dividend per-share W
Pa sptilde/pc real adjusted non-�n. share price W
Da (nfdivtilde/e1945)/pc real adjusted non-�n. dividend per-share W
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where:
pc = Consumer Price Index, annual average;
e = number of outstanding non-�nancial shares;
sp1945 = 1;
sptilde1945 = 1.
RealR, realP and realD are also obtained by Shiller using the CPI annual

average as a de�ator. With regard to the non-�nancial industry data, note
that the price-dividend ratio coincides with the ratio of the market value of
equity to the aggregate dividend: using Wright�s notation, P/D = sp/(div/e)
= mv/div and Pa/Da=sptilde/(nfdivtilde/e1945)=mv/nfdivtilde. If dividends
are paid out at the end of each period to those who owned the shares in the
beginning of the period, so that a share issued in t earns the �rst dividend in
t+1, P/D should be multiplied by et�1=et to make it consistent with published
yield indices. We ignore this adjustment because it is immaterial (et=et�1 is
always very close to one) and it would require sacri�cing one observation.
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Table 1 - A consistency test for the basic model.

(1) P spt
Dsp
t
= c0 + c1rt + nt; nt � AR(1)

(2) Dsp
t

Dsp
t�1
= �+ "t

(3) rt = �0 + �1rt�1 + �t

Unrestricted estimates:
c0 c1 � �0 �1 R2(1) R2(2) R2(3) LLik.:

23.94�� -33.74�� 1.02�� .01 .44�� .72 .00 .21 -465.65
(2.77) (14.58) (.01) (.00) (.10)

Restricted estimates:
� � �0 �1 R2(1) R2(2) R2(3) LLik.:
.94�� 1.02�� .01� .44�� .71 .00 .21 -465.70
(.01) (.02) (.00) (.08)

L-ratio statistic: .104
10% critical value for �2(1): 2.71

Notes: Standard errors in brackets; (�) and (��) denote signi�cance at the 10%
and 5% level. The system is estimated by Full-Information Maximum Likelihood
under the assumption of joint normality of the innovations. The data is S&P,
1900-1995.
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Table 2 - State-space estimates for the S&P data.

P spt
Dsp
t
= c0 + c1rt +

Bt
Dsp
t
+ nt

Bt = (1 + rt�1 + �)Bt�1 + bt

c0 c1 � Mll CVM BDSL
[i] 1900-1990 22.06�� -16.6�� -.07 -247 .096 .015

(2.64) (8.43) (.06) .60 .09

[ii] 1900-1990y 21.98�� -17.20� [.06] -253 .064 .014
(2.84) (9.47) .78 .11

[iii] 1900-2002 21.11�� -18.97� .11�� -315 .277 .037
(3.92) (10.03) (.03) .15 .00

[iv] 1900-2002y 17.66�� -18.40 [.06] -317 .418 .046
(3.84) (18.97) .06 .00

Notes: Standard errors in brackets; (�) and (��) denote signi�cance at the 10%
and 5% level. (y) means that � is restricted. Mll is the maximised log-likelihood.
CVM and BDSL are diagnostic tests on the standardised prediction errors of the
Pt=Dt equation, namely n̂tjt�1. CVM is the Cramer-Von Mises test of the null
hypothesis nt � N(0; 1); the table reports the test statistic and, below, the p-
value. BDSL is the Brock et al. test of the null hypothesis nt � i:i:d: (see
footnote 18, p.17); the table reports the statistic and the bootstrapped p-value
(the "embedding dimension" is set equal to two; p-values are consistently larger
for higher dimensions).

39



Table 3 - Price-dividend ratio equation, non-adjusted industry data.

Pt=Dt = c0 + c1rt + nt; nt � AR(1)
c0 c1 R2 DW

1900-2000 28.62�� -54.92�� .65 2.02
(3.79) (20.82)

1900-1990 25.88�� -56.90�� .59 1.99
(2.73) (23.90)

1900-1970 25.05�� -46.09�� .60 2.11
(3.49) (18.29)

Notes: The estimation method is non-linear 2SLS with instruments (rt�1; Pt�1=Dt�1).
Newey-West standard errors in brackets; * (**) denotes signi�cance at the 5% (1%)
level.

Table 4 - Price-dividend ratio equation, adjusted industry data.

P at =D
a
t = c0 + c1rt + nt; nt � AR(1)

c0 c1 R2 DW

1900-2000 30.08�� -36.08� .76 2.13
(11.38) (17.38)

1900-1990 29.51�� -37.26� .79 2.17
(2.88) (17.78)

1900-1970 30.17�� -29.89 .70 2.00
(3.14) (18.00)

Notes: The estimation method is non-linear LS. Newey-West standard errors in
brackets; * (**) denotes signi�cance at the 5% (1%) level. Two dummy variables
are introduced for 1929 and 1971; the estimated coe¢ cients (not reported) are
both positive and signi�cant at the 1% level.
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Table 5 - Magnitude of the bubble.

S&P companies: Non-�nancial sector:
P spt
Dsp
t

Btjt
Dsp
t

Btjt
P spt
(%) Pt

Dt

Btjt
Dt

Btjt
Pt
(%)

1960 30.2 9.3 30.9 34.6 9.9 28.5
1961 29.7 9.5 32.0 41.5 14.5 34.8
1962 32.8 11.5 35.1 37.4 13.4 35.8
1963 29.0 9.8 33.8 37.2 12.7 34.0
1964 30.8 10.3 33.4 39.9 14.3 35.8
1965 32.2 11.3 35.2 40.0 14.6 36.6
1966 33.6 12.8 38.2 32.6 11.5 35.3
1967 29.9 11.5 38.5 40.7 14.2 34.8
1968 32.3 12.1 37.6 44.2 17.0 38.4
1969 34.2 13.8 40.3 37.4 15.9 42.4
1970 30.2 12.3 40.9 38.5 16.5 42.7
[...]
1990 29.6 8.6 29.2 25.0 4.2 16.6
1991 27.3 8.3 30.6 32.1 5.8 18.0
1992 34.7 12.1 34.9 32.6 6.4 19.7
1993 35.4 14.4 40.6 32.6 6.8 20.9
1994 36.8 16.0 43.3 30.5 6.6 21.5
1995 34.6 15.7 45.3 36.0 8.0 22.0
1996 42.4 19.7 46.4 37.9 9.3 24.5
1997 50.2 26.5 52.8 44.7 12.6 28.2
1998 60.4 35.3 58.5 48.4 15.5 32.0
1999 76.8 49.4 64.3 60.5 21.7 35.9
2000 90.8 66.5 73.2 46.1 23.3 50.5

Notes: The bubble is signi�cant at the 5% level for all t; however, in the case
of the non-�nancial sector the Kalman �lter is run assuming that the parameters
of the price-dividend ratio equation are known (see text).
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Table 6 - A reassessment of the "intrinsic bubble" hypothesis.

Pt=Dt = c0 + cD
��1
t + �t; �t = ��t�1 + ut

c0 c � R2 DW
1900-1990: S&P(1) 14.74�� .72�� .58�� .66 1.71

(.00) (.00) (.00)
Sector, n.a.(2) 23.81�� 3.75 .79�� .65 2.01

(0.00) (0.54) (.00)
Sector, a.(2) 29.93� -1.07 .65�� .77 2.15

(0.01) (.91) (.00)

1900-2000: S&P(1) 21.90�� -.04 1.12�� .86 1.83
(.00) (.43) (.00)

Sector, n.a.(2) 23.68�� 4.76�� .76�� .71 2.03
(.00) (.00) (.00)

Sector, a.(2) 27.26�� .28 .62�� .75 2.11
(.00) (.69) (.00)

Notes: (1) Standard&Poors data, OLS estimation. (2) Adjusted (a) and non-
adjusted (na) industry data, 2SLS estimation. The equation for adjusted data also
contains two dummy variables for 1929 and 1971.� (��) denotes signi�cance at the
5% (1%) level; p-values are in brackets.
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Figure 1 - S&P price-dividend ratio (� = :06; sample 1900-1990).
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Figure 2 - Btjt � 2 standard error (� = :06; sample 1900-1990).
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Figure 3 - S&P price-dividend ratio (�̂ = :11; sample 1900-2002).
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Figure 4 - Btjt � 2 standard error (�̂ = :11; sample 1900-2002).
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Figure 5 - Price-dividend ratios for S&P and non-�nancial companies.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

00 10 20 30 40 50 60 70 80 90 00

Dividend Adjusted dividend

Figure 6 - Growth rates, adjusted and non-adjusted dividends.
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Figure 7 - Non-�nancial share price bubble.

Notes: The plot shows the bubble Btjt �ltered from the Pt=Dt series under
the alternative assumptions that [c0; c1] is equal to [28.62,-54.92] (continuous line),
[25.88,-56.90] (long dash) and [25.05,-46.09] (short dash).
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