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Abstract

We develop a new automatically-computable test for super exogeneity, using a variant of general-
to-specific modelling. Based on the recent developments of impulse saturation applied to marginal
models under the null that no impulses matter, we select the significant impulses for testing in the
conditional. The approximate analytical non-centrality of the test is derived for a failure of invariance
and of weak exogeneity when there is a shift in the conditional model. Monte Carlo simulations
confirm the nominal significance levels under the null, and power against the two alternatives.
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1 Introduction

In all areas of policy which involve regime shifts or structural breaks in conditioning variables, super
exogeneity of the parameters of conditional models under changes in the distributions of conditioning
variables is of paramount importance. In models without contemporaneous conditioning variables, such
as vector autoregressions (VARs), invariance under such shifts is equally relevant. Tests for super exo-
geneity and invariance have been proposed by Engle, Hendry and Richard (1983), Hendry (1988), Favero
(1989), Favero and Hendry (1992), Engle and Hendry (1993), Psaradakis and Sola (1996), Jansen and
Teräsvirta (1996) and Krolzig and Toro (2002), inter alia:Ericsson and Irons (1994) overview the lit-
erature at the time of publication. Favero and Hendry (1992), building on Hendry (1988), considered
the impact of non-constant marginal processes on conditional models, and concluded that location shifts
were essential for detecting violations attributable to the Lucas (1976) critique. Engle and Hendry (1993)
examined the impact on a conditional model of changes in the moments of the conditioning variables,
using a linear approximation: tests for super exogeneity were constructed by replacing the unobservable
changing moments by proxies based on models of the process generating the conditioning variables,
including models based on ARCH processes (see Engle, 1982),thereby allowing for non-constant error
variances to capture changes in regimes. However, Psaradakis and Sola (1996) claim that such tests have
relatively low power for rejecting the Lucas critique. Jansen and Teräsvirta (1996) propose self-exciting
threshold models for testing constancy in the conditional model as well as super exogeneity. Krolzig and
Toro (2002) developed super-exogeneity tests based on a reduced-rank technique for co-breaking shown
by the presence of common deterministic shifts, and demonstrated that their proposal dominated existing
tests (on co-breaking, see Clements and Hendry, 1999, and Hendry and Massmann, 2005). We suggest
new additions to this set of possible tests, show that their rejection frequencies under the null are close
to their nominal significance levels, and examine their power properties for failures of super exogeneity
and invariance.

The ability to detect all outliers and shifts in a model usingthe dummy saturation techniques proposed
by Hendry, Johansen and Santos (2004) opens the door to this new class of automatically computable
super-exogeneity and invariance tests. Their approach is to saturate the marginal model (or system) with
impulse indicators (namely, include an impulse for every observation, but entered in feasible subsets),
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and retain all significant outcomes. They derive the probability under the null of falsely retaining im-
pulses for a location-scaleIID process, and obtain the distribution of the estimated mean and variance
after saturation. We extend that idea to test the relevance in the conditional model of all the retained
impulses from the marginal models. As we show below, such a test has the correct size under the null of
super exogeneity of the conditioning variables for the parameters of the conditional model over a range
of sizes of the marginal model saturation tests. Moreover, it has power to detect failures of super exo-
geneity and invariance when there are location shifts in themarginal models. Finally, it can be computed
automatically–that is without explicit user intervention, as occurs with (say) residual autocorrelation
tests–once the desired sizes of the marginal saturation andconditional super-exogeneity tests have been
specified.

Five conditions need to be satisfied for an automatic test of super exogeneity and invariance. First,
the test should not requireex anteknowledge by the investigator of the timing, signs or magnitudes of
any breaks in the marginal processes of the conditioning variables. The test proposed here uses impulse
saturation techniques on the marginal equations to determine these aspects. Secondly, the correct data
generation process for the marginal variables should not need to be known for the test to have the desired
rejection frequency under the null. That condition is satisfied here when there are no unit roots (stochastic
trends) in any of the variables: we will investigate the generalization of the approach to unit-root non-
stationarity in due course. Thirdly, the conditional modelshould not need to be over-identified under the
alternative of a failure of super exogeneity, as required for tests in the class proposed by (say) Revankar
and Hartley (1973). Fourthly, the test must have power against any form of failure of super exogeneity
or invariance in the conditional model when there are location shifts in some of the marginal processes.
Below, we establish the general forms of the non-centralityparameters of the proposed tests in the two
main cases. Finally, the test should be computable without additional user intervention. That is true of
the impulse saturation test based on PcGets, although as yetthe precise form of the test procedure is not
implemented in any released version.1

The structure of the paper is as follows. Section 2 considerssuper exogeneity in a regression context
to elucidate the testable hypotheses which it entails. Next, section 3 discusses the three different ways in
which super exogeneity can fail, and how each could be tested. Section 4 describes the impulse saturation
tests developed by Hendryet al. (2004), and how these can be extended to test super exogeneity and
invariance. Section 5 provides analytic and Monte Carlo evidence on the null rejection frequency of
the proposed procedure. Section 6 considers the power of thefirst stage to determine the location shifts
in the marginal processes. Then section 7 provides detailedanalytic derivations for three multivariate
examples of super exogeneity failures, namely a failure of weak exogeneity under non-constant marginal
processes; a failure of invariance of the conditional modelparameters to shifts in those of the marginal
distributions; and a failure of weak exogeneity with constant marginal processes, which is a case where
the proposed tests may have little power. Section 8 investigates a co-breaking based saturation test which
builds on Krolzig and Toro (2002) and Hendry and Massmann (2005). Section 9 investigates the powers
of the proposed tests in an extensive set of Monte Carlo experiments related to the analysis in section 7
for a bivariate DGP. Section 10 describes similar Monte Carlo experiments withn = 3 variables. Section
11 concludes.

1PcGets is an Ox Package (see Doornik, 2001, and Hendry and Krolzig, 1999), designed for general to specific modelling.
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2 Super exogeneity in a regression context

Consider the sequentially factorized joint data generation process (DGP) of ann-dimensional vector
process{xt}:

T∏

t=1

Dx (xt | Xt−1,θ) =
T∏

t=1

Dy|z (yt | zt,Xt−1,φ1)Dz (zt | Xt−1,φ2) (1)

wherex′
t = (y′

t : z′t) andφ =
(
φ′

1 : φ′
2

)′
= f (θ) ∈ Rk. The parameters of they andz processes need

to be variation free forzt to be weakly exogenous for the parameters of interestψ = h (φ1), but that
does not rule out the possibility thatφ1 may change ifφ2 is changed. Super exogeneity augments weak
exogeneity with such parameter invariance in the conditional model.

WhenDx (·) is the multivariate normal, we can express (1) as the unconditional model:
(
yt

zt

)
∼ INn

[(
µ1,t

µ2,t

)
,

(
σ11,t σ′

12,t

σ12,t Ω22,t

)]
(2)

whereµ1,t andµ2,t are possibly functions ofXt−1. To define the parameters of interest, we let the
economic theory formulation entail:

µ1,t = µ0 + β′µ2,t (3)

whereβ is the primary parameter of interest. The Lucas (1976) critique explicitly considers a model
where expectations (the latent decision variables given bythe µ2,t) are incorrectly modelled by the
outcomeszt. From (2) and (3):

E [yt | zt] = µ1,t + σ′
12,tΩ

−1
22,t

(
zt − µ2,t

)

= µ0 +
(
β′ − σ′

12,tΩ
−1
22,t

)
µ2,t + σ′

12,tΩ
−1
22,tzt

= µ0 + γ1,t + γ′
2,tzt (4)

whereγ′
2,t = σ′

12,tΩ
−1
22,t and γ1,t =

(
β − γ2,t

)′
µ2,t. The conditional variance isω2

t = σ11,t −
σ′

12,tΩ
−1

22,tσ21,t. Thus, the parameters of the conditional and marginal densities respectively are:

φ1,t =
(
µ0 : γ1,t : γ2,t : ω2

t

)
and φ2,t =

(
µ2,t : Ω22,t

)
.

When (4) is specified as the regression model fort = 1, . . . , T :

yt = µ0 + β′zt + εt where εt ∼ IN
[
0, ω2

]
(5)

four conditions must be satisfied forzt to be super exogenous for
(
β, ω2

)
(see e.g., Engle and Hendry,

1993):

(a) γ2,t = γ2 is constant∀t;
(b) β = γ2;
(c) ω2

t = ω2 is constant∀t;
(d) φ1,t is invariant toCφ2 .
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Condition (a) requires thatσ′
12,tΩ

−1

22,t is constant over time, which could occur because the two
components move in tandem through being connected byσ′

12,t = γ ′
2Ω22,t, as well as because theσij

happened not to change over the sample. Condition (b) then entails thatzt is weakly exogenous for a
constantβ. Together, (a)+(b) also entail thatγ1,t = 0 and hence the conditional expectation in (4) is
independent ofµ2,t. Condition (c) then entails in turn thatσ11,t−σ′

12,tΩ
−1
22,tσ21,t = σ11,t−β′Ω22,tβ =

ω2 is constant. Finally, in (d),Cφ2 is a class of interventions changing the marginal process parameters
φ2, so (d) requires no cross links between the conditional and marginal parameters. When the four
conditions (a)–(d) are satisfied, then:

E [yt | zt] = µ0 + β′zt, (6)

in which casezt is super exogenous forβ in this model. That requires in turn:

σ′
12,t = β′Ω22,t ∀t. (7)

The necessary condition (7) requires that the means in (3) are interrelated by the same parameterβ as
the covariancesσ12,t are with the variancesΩ22,t. Under super exogeneity, the joint density is:

(
yt

zt

)
∼ INn

[(
µ0 + β′µ2,t

µ2,t

)
,

(
ω2 + β′Ω22,tβ β′Ω22,t

Ω22,tβ Ω22,t

)]
, (8)

so the conditional-marginal factorization is:
(
yt | zt

zt

)
∼ INn

[(
µ0 + β′zt

µ2,t

)
,

(
ω2 0′

0 Ω22,t

)]
, (9)

Consequently, under super exogeneity, the parameters(µ2,t,Ω22,t) can change in the marginal model:

zt ∼ INn−1

[
µ2,t,Ω22,t

]
, (10)

without altering the parameters of (5). Deterministic-shift co-breaking will occur in (8) as
(
1 : β′

)
xt

does not depend onµ2,t. Conversely, ifzt is not super exogenous forβ, then changes in (10) should
affect (5).

3 Failures of super exogeneity

Super exogeneity may fail for any of three reasons:

(i) zt is not weakly exogenous forβ, in which case the coefficient in a regression ofyt onzt will not
coincide withβ;

(ii) the regression coefficient is not constant;
(iii) β is not invariant to changes inCφ2 .

From (4), whenzt is not super exogenous forβ but (3) holds:

E [yt | zt] = µ1,t + σ′
12,tΩ

−1
22,t

(
zt − µ2,t

)

= µ0 + β′zt +
(
γ′

2,t − β′
) (

zt − µ2,t

)

= µ0 + β′zt +
(
γ′

2,t − β′
)
v2,t (11)
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wherev2,t is the error on the marginal model (10):

zt = µ2,t + v2,t where v2,t ∼ INn−1 [0,Ω22,t] .

Modellingµ2,t by lagged values ofxt, to approximate the sequential factorization, yields the augmented
VAR:

zt = π0 +
s∑

j=1

Πjxt−j + v2,t where v2,t ∼ INn−1 [0,Ω22,t] . (12)

The introduction reviewed the currently available tests for for super exogeneity. The next section pro-
poses new tests for super exogeneity based on impulse saturation after briefly reviewing that procedure
as applied to the marginal process.

4 Impulse saturation tests

A key recent development is that of testing for non-constancy by adding a complete set of impulse
indicators

{
1{t}, t = 1, . . . , T

}
to a marginal model: see Hendryet al. (2004). Using a general-to-

specific procedure, those authors analytically establish the null distribution of the estimator of the mean
in a location-scaleIID distribution after addingT impulse indicators when the sample size isT . A two-
step process is investigated, where half the indicators areadded, and all significant indicators recorded,
then the other half examined, and finally the two retained sets of indicators are combined. The average
retention rate of impulse indicators under the null isαT when the significance level of an individual test
is set atα, so forα = 0.01, for example,0.01T indicators will be retained. Moreover, Hendryet al.
(2004) show by simulation that other splits, such as reordering the impulses, or using three splits of size
T/3, do not affect the retention rate under the null, or the simulation-based distribution of the estimated
mean.

This procedure can be applied to the marginal models for the putative super-exogenous conditioning
variables. First, the associated significant dummies in themarginal processes are recorded. Secondly,
those which are retained are tested as an added variable set in the conditional model. Specifically, after
the first stage whenm impulse indicators are retained, a marginal model like (12)has been extended to:

zt = π0 +

s∑

j=1

Πjxt−j +

m∑

i=1

ρi,α1
1{t=ti} + v∗

2,t (13)

where the coefficients of the significant impulses are denoted ρi,α1
to emphasize their dependence on

the significance levelα1 used in the marginal model. As just noted, this test has the appropriate null
rejection frequency.

There is an important difference between outlier detection, which does just that, and impulse satura-
tion which will detect outliers, but may also reveal others that are hidden by being ‘picked up’ incorrectly
by other variables. Figure 1 illustrates for a mean shift near the mid-sample, where no outliers, as defined
by |û| > 2σ (say), are detected, but 40 dummies are significant in the PcGets approach (for an alternative
method of tackling such problems, see Sánchez and Peña, 2003).

The second stage is to add them retained impulses to the conditional model, yielding:

yt = µ0 + β′zt +

m∑

i=1

τ i,α2
1{t=ti} + εt (14)
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Figure 1 Absence of outliers despite a break.

and conduct anF-test for the significance of(τ1,α2
. . . τm,α2

) at levelα2. Under the null of super
exogeneity, theF-test of the joint significance of them impulse indicators in the conditional model should
have an approximateF-distribution and thereby allow an appropriately sized test: section 5 derives the
null distribution and presents Monte Carlo evidence on its small-sample relevance. Under the alternative,
the test will have power in a variety of situations discussedin section 7 below. Crucially, such a test can
be completely automated, bringing super exogeneity into the purview of hypotheses about a model that
can be as easily tested as (say) residual autocorrelation. Intuitively, if super exogeneity is invalid, so
β′ 6= σ′

12,tΩ
−1
22,t in (11), then the impact of the largest values of the errorsv2,t on the conditional

model should be the easiest to detect, noting that the significant impulses in (13) capture the outliers not
accounted for by the regressor variables used.

A key feature of such a test is that the null rejection frequency of super exogeneity by thisF-test in
the conditional model should not depend on the significance level,α1, set for each individual test in the
marginal model. Monte Carlo evidence presented in section 5.1 supports that contention. Thus, the main
consideration for choosingα1 is power against reasonable alternatives to super exogeneity. Too large a
value ofα1 will lead to anF-test with large degrees of freedom; too small will lead to few, or even no,
impulses being retained from the marginal models. For example, with four regressors andT = 100 then
α1 = 0.01 would yield four impulses in general, whereasα1 = 0.05 would provide20.

Following Hendry and Santos (2005), a variant of the test in (14), discussed in more detail below,
which could have different power characteristics, is to combine them impulses detected in all the equa-
tions of (13) into an index:

ι1,t =

m∑

i=1

%̂i,α1
1{t=ti} where %̂i,α1

=

n−1∑

j=1

ρ̂j,i,α1
(15)
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and test the null ofϕ1 = 0 in:
yt = µ0 + β′zt + ϕ1ι1,t + εt. (16)

This provides an alternative scalar test withT−n−1 degrees of freedom, which should be approximately
distributed ast under the null of super exogeneity. In general, there shouldbe many fewer degrees of
freedom for such a test; the cost of the imposed restrictionsis that the implicit null must be larger. Indeed,
we show below that there are cases where its power would be low, and be dominated by theF-test. Also,
for testing a failure of invariance, the indices must be interacted withzt as in:

ι2,t =

m∑

i=1

n−1∑

j=1

ρ̂j,i,α1
zj,t1{t=ti} (17)

and then test for the null ofϕ1 = ϕ2 = 0 in:

yt = µ0 + β′zt + ϕ1ι1,t + ϕ2ι2,t + εt (18)

using a 2-degrees-of-freedomF-test. By focusing on the empirically detected departures in the marginal
process, such tests should have power under the alternative: below, we derive their large sample non-
centralities in three central cases.

Alternatively, if some interest resides in which of thezj,t is responsible for any failure of super
exogeneity, then a vector test of the form in (19) could be used, which might have more or fewer degrees
of freedom than the correspondingF-test in (14):

ι2,t =




ι2,1,t

ι2,2,t
...

ι2,n−1,t




where ι2,j,t =

mj∑

i=1

ρ̂j,i,α1
zj,t1{t=ti} (19)

with mj being the number of retailed impulses in the marginal model for zj,t.

5 The null rejection frequency of the super-exogeneity test

Reconsider the earlier DGP:
(
yt

zt

)
∼ Nn

[(
µ1,t

µ2,t

)
,

(
σ11 σ′

12

σ12 Σ22

)]
(20)

where:
zt = µ2,t + v2,t (21)

and:
vt ∼ Nn−1 [0,Σ22] . (22)

Then:
yt = µ1,t + εt + γ ′vt (23)

with γ = Σ−1
22
σ12 so:

εt | vt ∼ N
[
0, σ11 − σ′

12Σ
−1
22
σ12

]
. (24)
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Under the null of super exogeneity, from (57):

E [yt | zt] = µ0 + β′zt (25)

with:
yt = µ0 + β′zt + εt (26)

where:
µ1,t = µ0 + β′µ2,t and β = Σ−1

22
σ12 = γ.

Thus, even though thezt process is non-constant, the linear relation betweenyt andzt in (25) is constant.
Consequently, from (26), for anyk × (n− 1) selection matrixS with k ≤ (n− 1) of rank k having
elements that are zero except for unity in a different location in each column:

E [yt | zt] = µ0 + β′zt + 0′Sv2,t = µ0 + β′zt + 0′Sµ2,t (27)

so:
yt = µ0 + β′zt + 0′Sv2,t + εt. (28)

The errors, or components ofµ2,t, from (21) will have zero population components when added to (26).
Tests of the significance ofSv2,t or Sµ2,t in (28) should reject at their nominal significance level. In
particular, selecting which components to add by analyzingthe marginal process should not alter this
argument.

Consider the following baseline econometric model forzt:

zt = Φdt + v2,t (29)

wheredt is a set of impulse indicator variables with:

Φ̂ =

(
T∑

t=1

dtd
′
t

)−1( T∑

t=1

dtv2,ti

)
. (30)

Suppose that each of the impulses is retained in the econometric model for the marginal process when:
∣∣∣tbφi,j

∣∣∣ > cα1
(31)

wherecα1
is chosen according to a given significance levelα1. Now, consider the econometric model

for yt|zt as in (28). Conditioning onzt implies taking thezts as fixed, and hence thev2,ts. Thus, the
conditional econometric model remains:

E [yt | zt] = µ0 + β′zt + δ′dt = µ0 + β′zt. (32)

Given a significance levelα2, indicators will be retained in the conditional econometric model, given
that they are retained in the marginal if: ∣∣∣tbδi

∣∣∣ > cα2
. (33)

The probability of retaining the indicator in the conditional is:

Pr
(∣∣∣tbδi

∣∣∣ > cα2
|
∣∣∣tbφi,j

∣∣∣ > cα1

)
= Pr

(∣∣∣tbδi

∣∣∣ > cα2

)
= α2 (34)

since (31) holds. Moreover, this results only depends on thesignificance levelcα2
used on the conditional

model and not onα1.
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5.1 Monte Carlo evidence on the null rejection frequency

In these Monte Carlo experiments, super exogeneity holds asthe null, and we consider three settings
for the marginal process: where there are no breaks in§5.1.1; a variance change in§5.1.2; and a mean
shift in §5.1.3. In each case, the baseline DGP is a bivariate system which can be expressed as (see e.g.,
Hendry, 1995): (

yt

zt

)
∼ IN2

[(
2

1

)
,

(
21 10

10 5

)]
(35)

which in turn impliesβ = 2 = γ andω2 = 1, the parameters of interest in the conditional econometric
model.

The aim of the Monte Carlo experiments is to establish the null rejection frequencies of the extended
super-exogeneity tests, and ascertain their dependence, if any, on the nominal significance level for im-
pulse retention in the marginal process. Thus, impulse saturation of the marginal model and retention of
the relevant indicators should not require us to change the critical values used to test such indicators in
the conditional model. If so, pre-searching for the relevant dates at which shifts might have occurred in
the marginal, does not affect testing for associated shiftsin the conditional.

We consider a constant DGP and two DGPs with changes in thezt process, all under the null
of super exogeneity, where invariance and weak exogeneity hold before and after the change in the
marginal process. For the baseline DGP in (35), the parameters of the conditional modelyt|zt are
φ1,t =

(
γ1,t; γ2,t;ω

2
t

)
, whereγ1,t = 0 by virtue of weak exogeneity, andγ2,t = σ12,tσ

−1

22,t with
ω2

t = σ11,t − σ2
12,tσ

−1
22,t = 1 and γ2,t = 2 = β. The parameters of the marginal model are

φ2,t = (µ2,t;σ22,t). Changes in the marginal process always occur at timeT1 = 81, implying k = 20.
We examine several significance levels for testing and retaining impulses in the saturated location-scale
model for the marginal, and also allow the significance levels for testing in the conditional to vary. The
impulse saturation uses a partition ofT/2 with M = 10000 replications conducted in the Monte Carlo
experiments.

5.1.1 Constant marginal under the null of super exogeneity

We use the simplest marginal model, defined by:

zt = 1 + vt (36)

wherevt ∼ IN [0, 5]. This econometric model mimics the location-scale model analysis in Hendryet al.
(2004). As a sample split ofT/2 is used, the econometric models for the marginal are:

zt = µ2 +

T/2∑

t=1

ψt1t + ςt (37)

and:

zt = µ2 +
T∑

t=T/2+1

ψt1t + ξt. (38)

LetSα1
denote the set of significant dummies in the econometric models (37) and (38). Our test strategy

entails introducing these dummies into the econometric model for the conditional. Hence, the second
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stage of the extended test is to estimate:

yt = βzt +
∑

i∈Sα1

φi1ti + νt (39)

and to test the joint significance of the dummies defined bySα1
in the conditional model. Averaging

across theM replications, we obtain the average relative frequency with which a block of indicators
included in (39), due to belonging toSα1

, is retained in the conditional. Given that we have imposed
super exogeneity by design, we expect such a null rejection frequency to be close to the postulated
nominal significance level. This would constitute evidencethat no distortion in selection of indicators
was introduced by dummy saturation in the marginal model followed by testing for joint significance of
the retained dummies of the marginal in the conditional.

However, the marginal tests should not use too low a probability of retaining impulses, or else the
conditional must automatically have a zero null rejection frequency. AtT = 50 andα1 = 0.01, about
one impulse per two trials will be retained, so half the time,no impulses will be retained; on the other half
of the trials, aboutα2 will be retained, so roughly0.5α2 will be found overall, as simulation confirms
(unconditional rejection frequencies were recorded throughout).

Figure 2 reports the empirical rejection frequencies of thenull in the conditional model when the
significant dummies from the marginal are added as in (39). Asbefore,α1 represents the nominal
significance level used for thet-tests on each individual indicator in the marginal model (horizontal axis),
andα2 represents the significance level for theF andt tests on the retained dummies in the conditional
(vertical axis).
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Figure 2 Null rejection frequencies ofF andt tests in conditional asα1 varies for constant marginal.

The simulated null rejection frequencies and the nominal significance levels in the conditional model
are close for theF and t-tests so long asT × α1 > 3. Then, there is no distortion in the number of
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retained dummies for either test in the conditional under the null, whent-tests are used in the marginal
model. However, constant marginal processes are the ‘worst-case’: the next two sections consider mean
and variance changes where many outliers are retained, so there are fewer cases of zero impulses to enter
in the conditional leading to constantα2 asα1 varies.

5.1.2 Changes in the variance of zt under the null of super exogeneity

The DGP forT > T1 = 0.8T is given by:
(
yt

zt

)
∼ N2

[(
2

1

)
,

(
1 + 20θ 10θ

10θ 5θ

)]
(40)

soσ22,t is multiplied by a positive scalarθ, whereσ12,t adjusts accordingly. Then, the newγ∗2,t is such
that:

γ∗2,t =
σ∗12,t

σ∗
22,t

=
10θ

5θ
= γ2,t = 2 = β. (41)

Hence, the change inφ2,t induced by a change inσ22,t does not cause a change inγ2,t. Also, γ1,t =

(β − γ2,t)µ2,t = 0 and, sinceσ∗11,t = 1 + 20θ:

ω2∗
t = σ∗11,t −

(
σ∗12,t

)2 (
σ∗22,t

)−1
= 1 + 20θ − 100θ2

20θ
= ω2

t = 1. (42)

Thus, in this class of DGPs,φ1,t is invariant to changes inφ2,t induced by changes inσ22,t. Since
weak exogeneity and invariance hold, super exogeneity holds, so the null distributions of the tests should
remain as in subsection 5.1.1.

However, the impulse saturation test has power to detect thevariance shift in the marginal: this was
presaged in Hendry and Santos (2005), who showed that impulse dummies could be used to discriminate
between mixtures of distributions in marginal processes, and the variance shift here is simply a time-
ordered example thereof. Thus, unlike the previous case, where onlyαT impulses would be retained on
average, the number retained depends on the power of the impulse saturation test in the marginal. We
investigate that power in subsection 6.2.

Figure 3 reports the empirical rejection frequencies of thenull in the conditional model when testing
the significance of the dummies selected from the marginal. Again,α2 represents the significance level
for the F and t tests on the retained dummies in the conditional (vertical axis), and the horizontal axis
corresponds to the three values ofθ = (2; 5; 10) for α1 = 2.5% throughout.

Both theF and t tests have appropriate null rejection frequencies forT > 100, even when the
variance of the marginal process changes markedly, but are slightly undersized atT = 50 for small shifts
when sometimes no impulses may be retained. Neither test is confused between variance changes in the
marginal and failure of super exogeneity, when the null holds. The next sub-section assesses empirical
rejection frequencies when mean shifts occur in the marginal process.

5.1.3 Changes in the mean of zt under the null of super exogeneity

We modify the baseline DGP (35) to:
(
yt

zt

)
∼ N2

[(
βδµz

δµz

)
,

(
21 10

10 5

)]
(43)
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Figure 3 Null rejection frequencies ofF andt tests in conditional asα1 varies for a variance shift in
the marginal.

whereδ = 1 until t > T1 = 0.8T whenδ ∈ R, in both cases withβ = 2. Super exogeneity holds
before and after the level shift. We assume that the variance-covariance matrix remains the same before
and after the shift, but it could be allowed to change as well,provided the values matched conditions for
super exogeneity.

We consider rather extreme cases of level shifts where the current unconditional mean ofzt is mul-
tiplied by factors ofδ = 2, δ = 10 up toδ = 100. Figure 4 reports the empirical rejection frequencies
where the horizontal axis corresponds to these three valuesof δ, again forα1 = 2.5% throughout.

In this extreme scenario, whenT > 100 the empirical rejection frequencies are never more than two
tenths of a percentage point away from the nominal significance levels postulated. Both tests do well for
all larger sample sizes in failing to spuriously reject the null of super exogeneity when the null is true,
but as before are slightly undersized atT = 50 for small shifts, when sometimes no impulses may be
retained.

One might intuitively think that the length of the break matters as far as spurious rejection of super
exogeneity is concerned. An experiment not reported here reveals that is not the case: even if45%

of the sample was contaminated with a level shift in the marginal of δ = 100, the empirical rejection
frequencies are, even at a loose nominal significance of10% in the conditional,9.88% when the block
F- test is used, and9.74% when the index test is used.

Overall, we conclude that the new tests have appropriate null rejection frequencies for both constant
and changing marginal processes, so turn to their ability todetect failures of exogeneity. This is a two-
stage process: fist detect shifts in the marginal, then use those to detect shifts in the conditional. We now
consider the properties of the first stage.
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Figure 4 Null rejection frequencies ofF andt tests in conditional asα1 varies for a mean shift in the
marginal.

6 Powers at stage 1

We consider the powers at stage 1 for both the mean shift and the variance change, in that order.

6.1 Detecting the mean shift in the marginal

The powers at the second stage conditional on knowing the break dates in the marginal, and hence cor-
rectly retaining every dummy, are easily calculated, but will only be accurate for large magnitude breaks,
parameterized below byλ, when the saturation approach locates all, and only, the relevant impulses. For
smaller values ofλ, fewer impulses will be detected in the marginal, and indeed, although the null rejec-
tion frequency of the test does not depend onα1, the power will, suggesting a looserα1. Unfortunately,
that in turn could lead to retaining spurious dummies (albeit fewer thanα1T1 as a location shift lowers
the null rejection frequency in the marginal: see Hendryet al., 2004).

The power to retain each dummy in each marginal model given inits simplest form by:

zj,t =
∑

i∈Sα1

ρi,j,α1{t=ti} + v∗2,j,t, (44)

when the marginal process is (45), namely:

zj,t = λj1{t>T1} + v2,j,t (45)

depends on the probability of rejecting the null for the associated estimated coefficient in (44):

ρ̂i,j,α = λj + v∗2,j,ti .
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The properties of such impulse indicators are discussed in Hendry and Santos (2005). Here, asV[ρ̂i,j,α] =

σ22,j :

E
[
tρi,j,α=0 (ψλ,α)

]
= E

[
ρ̂i,j,α√
σ̂22,j

]
' λj√

σ22,j
= ψλ,α (46)

(say).
Whenv2,j,t is normal, the power could be computed directly from thet-distribution. However, we

compute the power function here and below using an approximation to t2ρi,j,α=0 by a chi-squared with1
degree of freedom:

t2ρi,j,α=0

(
ψ2

λ,α

)
∼ χ2

1

(
ψ2

λ,α

)
. (47)

Next, we relate that non-centralχ2 distribution to a centralχ2 using (see e.g., Hendry, 1995):

χ2
1

(
ψ2

λ,α

)
= hχ2

m (0) (48)

such that fork = 1:

h =
k + 2ψ2

λ,α

k + ψ2
λ,α

and m =
k + ψ2

λ,α

h
. (49)

Finally, the power function of theχ2
1

(
ψ2

λ,α

)
test in (47) is approximated by:

P
[
t2ρi,j,α=0

(
ψ2

λ,α

)
> cα1

| H1

]
' P

[
χ2

1

(
ψ2

λ,α

)
> cα1

| H1

]
' P

[
χ2

m (0) > h−1cα1

]
. (50)

For non-integer values ofm, a weighted average of the neighbouring integer values is used. As an
example, whenψλ,α = 4 for cα1

= 3.84, thenh = 33/17 ' 1.94 andm = 8.76 (taking the nearest

integer values as 8 and 9 with weights 0.24 and 0.76) yieldsP

[
t2ρi,j,α=0 (16) > 3.84

]
' 0.99, as against

the exactt-distribution outcome of0.975. Whenλj = d
√
σ22,j , as in the experiments reported below,

ψ2
λ,α = d2 and so:

h =
1 + 2d2

1 + d2
and m =

1 + d2

h
.

Ford = 1, 2, 2.5, 3 and4 at cα1
= 3.84 we have:

pd = P

[
t2bρi,j,α

(
d2
)
> cα1

]
'





0.17 d = 1

0.50 d = 2

0.71 d = 2.5

0.86 d = 3

0.99 d = 4

so the power is low atd = 1 (the exactt-distribution outcome ford = 1 is 0.16), but has risen markedly
by d = 3. Viewing these powers as the probabilitypd of retaining a relevant dummy when testing the
marginal model, then approximatelypdk relevant dummies will be retained for testing in the conditional
model, attentuating the non-centralityϕr,α in (70) below relative to the known break-dates’ case.

Similarly, retention of irrelevant impulses, namely thosecorresponding to non-break related shocks
in the marginal process, will also lower power relative to knowing the break dates. For theF-test, that loss
will merely be an increase in its degrees-of-freedom, inducing little power reduction. However, the index
will include such values at their estimated outcomes so willlose more power. These effects also differ at
a given non-centrality of the test statistics by what induced the super-exogeneity failure: specifically, a
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larger break in the marginal with a smaller violation of the null will generally lead to a closer match of
the non-null rejection frequency and the optimum for known break dates, since few irrelevant impulses
will be retained when there is a large break.

6.2 Detecting the variance shift in the marginal

We consider a setting where the variance shiftθ > 1 occurs within one half, say at observationT1 > T/2

so that:
zt = 1 +

(
1{t<T1} +

√
θ1{t≥T1}

)
vt. (51)

The maximum feasible power would be from detecting and entering the set ofT − T1 + 1 impulses
1{t≥T1} each of which would then equal

√
θ1{t≥T1}vt to be judged against a baseline variance ofσ2

v :

t{t≥T1} =

√
θ1{t≥T1}vt

σv
,

which has a non-centrality ofψ2
θ,α1

= θ. Approximating by a centralχ2
1

(
ψ2

θ,α1

)
as before:

P

[
t2{t≥T1}

(
ψ2

θ,α1

)
> cα1

| H1

]
' P

[
χ2

1

(
ψ2

θ,α1

)
> cα1

| H1

]
' P

[
χ2

m (0) > h−1cα1

]
(52)

for:

h =
1 + 2ψ2

θ,α1

1 + ψ2
θ,α1

and m =

(
1 + ψ2

θ,α1

)2

1 + 2ψ2
θ,α1

. (53)

Thus, forψ2
θ,α1

= (2; 5; 10), power will be about (25%, 60%, 90%) respectively atα1 = 0.05.

7 Three super exogeneity failures

In this section, we derive explicit outcomes for three formsof super exogeneity failure, namely weak
exogeneity failure when the marginal process is non-constant in section 7.1; invariance failure in section
7.2; and weak exogeneity failure when the marginal process is constant in section 7.3. In each case, we
obtain the non-centralities and approximate powers of the tests for a known break, then modify these in
light of the stage 1 pre-test for indicators. Section 9 reports the simulation outcomes.

7.1 Weak exogeneity failure under non-constancy

Consider the normally-distributedn × 1 vector random variablext = (yt : z′t)
′ where the conditional

expectation ofyt is:

E [yt | zt] = µ1,t + σ′
12Σ

−1
22

(
zt − µ2,t

)
= µ1,t + γ ′

(
zt − µ2,t

)
(54)

with conditional variance:

E

[
(yt − E [yt|zt])

2 | zt

]
=
(
σ11 − σ′

12Σ
−1
22
σ12

)
,

where the parameter of interest isβ in the theoretical model (ignoring intercepts for simplicity of expo-
sition):

µ1,t = β′µ2,t. (55)
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Then:
yt = β′zt + (γ − β)′

(
zt − µ2,t

)
+ εt (56)

whereεt = yt − E[yt|zt] given (55), soE[εt|zt] = 0. Such a model is a possible example of the Lucas
critique where the agents’ behavioural rule depends onE[zt] as in (55), whereas the econometric equation
useszt, leading to (56).

The joint distribution ofxt is:
(
yt

zt

)
∼ Nn

[(
β′µ2,t

µ2,t

)
,

(
σ11 σ′

12

σ12 Σ22

)]
(57)

To complete the model, we postulate an explicit breaking process for{zt} which will induce a
violation in super, as well as weak, exogeneity throughγ 6= β, whereγ = Σ−1

22
σ12, namely:

zt = λ1{t>T1} + v2,t (58)

so E [zt] = λ1{t>T1} = µ2,t. In general, there could be breaks in the different marginalprocesses at
different times, but little additional insight is gleaned over the one-off break in (58) which may affect
one or morezts. The relevant moments of the joint process are:

E [zt] = λ1{t>T1}

E [yt] = β′E [zt] = β′λ1{t>T1}

E
[
ztz

′
t

]
= E

[(
λ1{t>T1} + v2,t

) (
λ1{t>T1} + v2,t

)′]
= λλ′1{t>T1} + Σ22

E [ztyt] = E
[(
λ1{t>T1} + v2,t

) (
β′λ1{t>T1} + v1,t

)]
= λ

(
β′λ

)
1{t>T1} + Σ22γ.

If the break is not handled, the fitted model is the regression:

yt = κ0 + κ′
1zt + ut (59)

whereE[ztut] = 0. Then, in (59), letting(T − T1) /T = r:

E

[(
κ̂0

κ̂1

)]
'

[
T∑

t=1

(
1 E [zt]

′

E [zt] E [ztz
′
t]

)]−1 [ T∑

t=1

(
E [yt]

E [ztyt]

)]

=

(
1 rλ′

rλ rλλ′ + Σ22

)−1(
rβ′λ

rλ
(
β′λ

)
+ Σ22γ

)

=

(
0

β

)
−
(

−rλ′

I

)
dr

where:
dr = H−1

r Σ22 (β − γ) . (60)

Consequently:

yt = κ0 + κ′
1zt + ut = rλ′dr + (β − dr)

′
zt + ut = β′zt − d′

r (zt − rλ) + ut (61)

showing that the coefficients are a function of the proportion r of the sample affected by the shift in the
marginal process. Recursive estimation and testing for constancy could reveal that problem, but here we
consider the extent to which adding the impulse indicators from the marginal process will also do so.
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Adding the impulse dummies to the marginal model at best would yield:

zt =

T∑

i=T1+1

ρ̂i,α1{t=ti} + v∗
2,t

for ti = T1 + 1, . . . , T where:
ρ̂i,α = λ+ v2,ti (62)

with:
v∗

2,t = 0 ∀t > T1,

noting that:

1{t>T1} =

T∑

i=T1+1

1{t=ti}.

Potentially, some irrelevant impulses may be retained and some relevant ones omitted, both of which
could lower the power derived below. However, when a break occurs, few non-break impulses are
retained, although for small values ofλ some of thêρi,α may be omitted as noted in section 6 above.

Recording which impulses matter, and adding these to (59) given (64), yields the full-sample regres-
sion (considering first the case where all relevant impulseswere detected in the marginal model):

yt = τ0 + τ ′
1zt +

T∑

i=T1+1

δi,α1{t=ti} + et. (63)

To see whether such a regression will have any power to detectfailures of super exogeneity, consider the
‘instantaneous’ relation given by:

E [yt | zt] = ς0,t + ς ′1,tzt

so that:
yt = ς0,t + ς ′1,tzt + et (64)

whereE [et] = 0 andE [ztet] = 0 implying:

E

[(
ς0,t

ς1,t

)]
'

(
1 λ′1{t>T1}

λ1{t>T1} λλ′1{t>T1} + Σ22

)−1(
β′λ1{t>T1}

λ
(
β′λ

)
1{t>T1} + Σ22γ

)

=

(
λ′ (β − γ) 1{t>T1}

γ

)
.

This suggests the model:
yt = γ ′zt + λ′ (β − γ) 1{t>T1} + et (65)

matching (61), so that adding all the indicators selected from the marginal model should substantively
improve the fit whenβ 6= γ. Indeed, (65) coincides with the DGP here, so{et} is an innovation process.

The power of theF-test of:
H0: δi,α = 0 ∀i,

in (63) by anFT−T1

T−T1−2
depends on the strength of the super-exogeneity violation,(β − γ), the sizes of

the breaks,λ, the sample sizeT , the relative number of periods affected by the break, and onα2. For
example, atT = 100 with a mid-point break inducing 50 impulse dummies, sinceP

(
F50

48 ≥ 1.97|H0

)
'
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0.01 andP
(
F50

48 ≥ 1.62|H0

)
' 0.05, these relatively low values ofcα2

suggest that such a test is likely
to have some power.

Before deriving that power, we noted above that test power could potentially be increased by forming
indices of the impulses found in the marginal model (see e.g., Hendry and Santos, 2005). Thus, instead
of adding theT − T1 individual 1{t=ti}, one could add the composite variablesι1,t andι2,t as in (15).
This always results in a two degree-of-freedom test, which again can be computed automatically as:

yt = τ0 + τ ′zt + τ2ι1,t + τ3ι2,t + et. (66)

The size and power properties are checked by simulation below, and contrasted with the optimal, but
generally infeasible, index1{t>T1}. Note that there should not be any selection of which dummiesto
retain in the conditional model, simply a one-off test of thejoint null.

7.1.1 Asymptotic power of the index test

A case where theoretical analysis is feasible is when1{t>T1} is known, and the test only depends on the
index1{t>T1}. In this specific case, the index-based test is equivalent toa Chow (1960) test for a known
break point (see Salkever, 1976), but that equivalence willnot hold in general for (say) intermittent
changes. Then, the index-based test is of the null,H0: τ2 = 0 in:

yt = τ0 + τ ′
1zt + τ21{t>T1} + ut (67)

where the DGP is (65) written as:

yt = γ ′zt + (β − γ)′ λ1{t>T1} + et. (68)

Since (68) is correctly specified,γ and(β − γ)′ λ are consistently estimated with:

V

[(
̂λ′ (β − γ)

γ̂

)]
' σ2

e

(
T∑

t=1

ι21,t E [z′tι1,t]

E [ztι1,t] E [ztz
′
t]

)−1

=
σ2

e

T

(
T
r−1 + λ′Σ−1

22
λ −λ′Σ−1

22

−Σ−1

22
λ Σ−1

22

)
. (69)

The power depends onλ, r, T , σe, α, as well as the departure betweenγ andβ induced by the failure of
super exogeneity. Since:

et = v1,t − γ ′v2,t,

then:
σ2

e = σ11 − σ′
12Σ

−1
22
σ12.

Let:
Σ−1

22
= KK′ so K′Σ22K = In−1

where:
K′zt = K′λ1{t>T1} + K′v2,t

andλ∗ =
√
rK′λ is the normalized break impact. Then the non-centrality of at-test ofH0: τ2 = 0 in

(67) is:

E [tτ2=0] =
(β − γ)′ λ

√
Tr

σe

√
1 + rλ′Σ−1

22
λ

=

√
T (λ∗)′ K−1 (β − γ)

√
(σ11 − γ′Σ22γ)

√
1 + λ∗ (λ∗)′

= ϕr,α, (70)
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The non-centralityϕr,α in (70) would be zero ifβ = γ (no failure of weak exogeneity), or ifλ = 0 or
r = 0 (no shift in the marginal process). Otherwise,ϕr,α is monotonically increasing in

√
T , (β − γ)

and inλ∗ (even though increasingλ∗ also increases the denominator), and monotonically decreasing in
σe andΣ22 ceteris paribus.

We compute the power function using the approximation tot2τ2=0 by a chi-squared with1 degrees of
freedom discussed in section 6 above witht2τ2=0

(
ϕ2

r,α

)
∼ χ2

1

(
ϕ2

r,α

)
' hχ2

m (0) from (49). Then, from
(50), P

[
χ2

1

(
ϕ2

r,α

)
> cα2

|H1

]
' P

[
χ2

m (0) > h−1cα2

]
. For example, whenϕ2

r,α = 5 for cα2
= 4, then

h = 51/26 ' 2 andm = 13 with P
[
χ2

13 (0) > 2
]
' 0.9998.

Finally, ϕ2
r,α should also be the non-centrality of the correspondingF-test, a conjecture that can be

checked by its mean value in the Monte Carlo simulations. However, the power may not be monotonic in
the arguments ofϕ2

r,α since the degrees of freedom of theF-test alter withr: a given value ofλ∗1 achieved
by a larger

√
r will have lower power than that from a smaller

√
r. More precisely, we approximate the

FT−T1

T−T1−2
(ϕr,α) by its numeratorχ2

k (ϕr,α) and that in turn by (48) using the more general formulae in
(49) fork = T − T1 = Tr. Then:

P
[
χ2

Tr (ϕr,α) > cα2
| H1

]
' P

[
χ2

m (0) > h−1cα2

]
(71)

where:

h =
Tr + 2ϕ2

r,α

Tr + ϕ2
r,α

and m =
Tr + ϕ2

r,α

h
. (72)

In comparison to the numerical example following (70), whenTr = 20 (say) forT = 100, thenh =

70/45 ' 1.56 andm ' 29 with cα2
' 31.4 soP

[
χ2

29 (0) > 20.1
]
' 0.89, delivering a somewhat lower

power.

7.1.2 Allowing for stage 1

The above results are conditional on keeping all and only therelevant impulses from the marginal, but
the analysis in section 6 revealed that was itself dependenton the parameters of the marginal DGPs.
Nevertheless, we can extend the analysis roughly to allow for such an effect by distinguishing the number
of elements in the indexι1,t from the length of the break. In a bivariate setting, corresponding to (65)
when the DGP is (68), we have:

E

[
̂λ (β − γ)

γ̂

]
'

(
T∑

t=1

E
[
ι21,t

]
E [ztι1,t]

E [ztι1,t] E
[
z2
t

]
)−1( T∑

t=1

E [ytι1,t]

E [ytzt]

)

=

(
pdr λpdr

λpdr λ2r + σ22

)−1(
βλpdr

βλ2r + γσ22

)

=

(
λ (β − γ)

γ

)
+

(β − γ)λ2r (1 − pd)

λ2r (1 − pd) + σ22

(
−λ
1

)
. (73)

Comparing (73) with the consistent estimates and their variances in (69) which result when the break
date is known, the effect of stage 1 selection is bound to be a loss of power. More precisely, letting the
estimated stage 2 model be:

yt = κ∗0zt + κ∗1ι1,t + ut (74)
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leads to a modified non-centrality corresponding to (70) when n = 2 but for (74), namely:

E
[
tκ∗

1
=0

]
=

√
Trpd (β − γ)λ

σu

√(
1 + λ2rσ−1

22

) , (75)

so:

E

[
t2κ∗

1
=0

]
=
Trpd (β − γ)2 λ2

σ2
u

(
1 + λ2rσ−1

22

) =
pdσ

2
eϕ

2
r,α

σ2
u

,

where:

σ2
u = σ2

e + σ22

(1 − pd)λ
2 (β − γ)2

λ2r (1 − pd) + σ22

. (76)

Thus, the power falls directly becausepd < 1 and indirectly becauseσ2
u > σ2

e . For example, com-
bining the parameter values for the tests just above with thelocation shift that deliveredpd = 0.16

for each impulse in section 6 yields (whereλ2 = σ22 = 5, β − γ = 0.25, Tr = 20, σ2
e = 1 so

σ2
u = 1.23) E

[
t2κ∗

1
=0

]
= 0.65, which is a notable reduction in the non-centrality. However, increasing to

λ = 2.5
√
σ22 raisespd to 0.71 andE[t2κ∗

1
=0

] to 11.4, so the power rises quickly towards the maximum,

essentially reaching that bound byλ = 4
√
σ22. Notice from (76) thatσ2

u need not tend monotonically to
σ2

e asλ increases, although it eventually converges sincepd → 1 asλ gets sufficiently large.

7.2 Invariance failure

The previous subsection concerned a model where the regression lacked invariance to a location shift
in the marginal model because of a failure of weak exogeneityinduced byγ 6= β. Nevertheless, the
test had some power, since the non-centrality was non-zero under the alternative of no weak exogeneity
with a shift in the marginal process. We now allow the parameters of the marginal and conditional to be
directly cross-linked, where the marginal remains:

zt = λ0,t + v2,t = λ1{t>T1} + v2,t,

with E [zt] = λ1{t>T1} = µ2,t. Moreover, there is no ‘direct’ violation of weak exogeneity, in that
γ = β, but the cross-link between the means violates super exogeneity, namelyµ1,t = β′

tµ2,t when:

βt = β0 + β11{t>T1}, (77)

where: (
yt

zt

)
∼ Nn

[(
µ1,t

µ2,t

)
,

(
ω2 + β′

tΣ22βt β′
tΣ22

Σ22βt Σ22

)]
. (78)

Thus, the parameters of the conditional distribution shiftwhen those of the marginal process alter. Since
γt = βt:

E [yt | zt] = β′
tµ2,t + β′

t

(
zt − µ2,t

)
= β′

0zt + β′
1zt1{t>T1}. (79)

The marginal model is the same as in the previous section, soρ̂i,α = λ + v2,ti from (62), and hence a
test based on adding the associated

{
1{t=ti}

}
and

{
1{t=ti}zj,ti

}
, or their matching summaries as in (15),

should also have power against violations of invariance, aswe now show.
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The regression equation postulated by the econometrician is the same as (59), but the data moments
differ for the changed DGP:

E [zt] = λ1{t>T1}

E [yt] =
(
β′

0 + β′
11{t>T1}

)
E [zt] =

(
β′

0 + β′
1

)
λ1{t>T1}

E
[
ztz

′
t

]
= E

[(
λ1{t>T1} + v2,t

) (
λ1{t>T1} + v2,t

)′]
= λλ′1{t>T1} + Σ22

E [ztyt] = E

[(
λ1{t>T1} + v2,t

) ((
β0 + β11{t>T1}

)′
λ1{t>T1} + v1,t

)]

=
(
λλ′ + Σ22

)
(β0 + β1) 1{t>T1} + Σ22β0

(
1 − 1{t>T1}

)

E [ι2,tyt] = E

[(
1{t>T1} [λ+ v2,t]

)((
β0 + β11{t>T1}

)′
λ1{t>T1} + v1,t

)]

=
(
λλ′ + Σ22

)
(β0 + β1) 1{t>T1}

Hence, the implicit full-sample parameters of (59) become:

E

[(
κ̃0

κ̃1

)]
'

[
T∑

t=1

(
1 E [zt]

E [zt] E [ztz
′
t]

)]−1 [ T∑

t=1

(
E [yt]

E [ztyt]

)]

=

(
1 λ′r

λr λλ′r + Σ22

)−1(
(β0 + β1)

′ λr

λλ′ (β0 + β1) r + Σ22 (β0 + β1r)

)

=

(
0

β0 + β1

)
−
(

−λ′r

In−1

)
(
λλ′r (r − 1) + Σ22

)−1
Σ22β1 (1 − r) ,

which is similar in form to (60), and simplifies to the vector(0,β0 + β1)
′ whenλ = 0.

The ‘instantaneous’ relation is again given by:

yt = ς0,t + ς ′1,tzt + et (80)

where:
ς0,t = E [yt] − ς ′1,tE [zt] = (β0 + β1)

′ λ1{t>T1} − ς ′1,tλ1{t>T1} = 0,

and:

ς1,t '
(
E
[
(zt − E [zt]) (zt − E [zt])

′])−1
E [(yt − E [yt]) (zt − E [zt])]

= Σ−1

22
E [v1,tv2,t]

= β0 + β11{t>T1}

so as expected:
yt = β′

0zt + β′
1zt1{t>T1} + et = τ ′

1zt + τ ′
2zt1{t>T1} + et. (81)

Since:

1{t>T1}zt =
T∑

i=T1+1

1{t=ti}zt =
T∑

i=T1+1

ρ̂i1{t=ti}

(say), then adding a complete set of impulses from the marginal model should detect departures from
super exogeneity. The index equivalent here requires adding the impulses from the marginal model times
zt, so differs from the previous case, albeit that both indexes, ι1,t = 1{t>T1} andι2,t = 1{t>T1}zt could
be calculated and added.



23

7.2.1 Asymptotic power of the test of invariance

Two issues where theoretical analysis can shed light concern the power of the test based onτ 2 (adding
ι2,t as in (81), which is the model analogue of (79), so thatE [et] = 0 = E [et|zt]), and just adding the
index1{t>T1}. First, for addingι2,t:

yt = τ ′
1zt + τ ′

2ι2,t + ut. (82)

The variances of the parameter estimates from (82) are approximately:

V

[(
τ̃ 1

τ̃ 2

)]
' σ2

e

[
T∑

t=1

(
E [ztz

′
t] E

[
ztι

′
2,t

]

E [ztι2,t] E
[
ι2,tι

′
2,t

]
)]−1

=
σ2

e

T

[( (
λλ′r + Σ22

) (
λλ′ + Σ22

)
r(

λλ′ + Σ22

)
r
[(
λλ′ + Σ22

)
r
]
)]−1

=
σ2

e

Tr (1 − r)

(
rΣ−1

22
−rΣ−1

22

−rΣ−1
22

(
(1 − r)

(
λλ′ + Σ22

)−1
+ rΣ−1

22

)
)
.

Consequently, asλ∗ =
√
rK′λ, and noting that:

(
(1 − r)

(
λλ′ + Σ22

)−1
+ rΣ−1

22

)−1

=
(
λλ′ + Σ22

) (
rλλ′ + Σ22

)−1
Σ22,

anF-test ofτ 2 = 0 is:

E [Fτ2=0] = (T − 2n) r (1 − r)
β′

1

((
λλ′ + Σ22

) (
rλλ′ + Σ22

)−1
Σ22

)
β1

σ2
e (n− 1)

= (T − 2n) (1 − r)
β′

1 (K′)−1
(
λ∗λ∗′ + rI

) (
λ∗λ∗′ + I

)−1
K−1β1

ω2 (n− 1)
= φ2

r,α,

aset = yt − E [yt|zt] soσ2
e = ω2.

In a scalar setting, son = 2:

E [tτ2=0] =
β1

√
T (λ2 + σ22) r (1 − r)σ22

σe

√
λ2r + σ22

=

√
T (1 − r)β1

√
r + (λ∗)2

ω∗

√
1 + (λ∗)2

= φr,α,

with ω∗ = ω/
√
σ22. Againφr,α is monotonically increasing inλ∗, in β1 and inr for fixedλ; and because

of the form of (77),φr,α 6= 0 even ifλ∗ = 0.
The power can be calculated as in (47)–(50) above.
Thenφ2

r,α probably represents the non-centrality of theF-test: this can be checked by the mean value
in the Monte Carlo simulations using the formula in Johnson and Kotz (1970, p.190) that:

E

[
F

k1

k2

(
φ2

r,α

)]
=
k2

(
k1 + φ2

r,α

)

k1 (k2 − 2)
. (83)

The power can be calculated as in (50)–(72).
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7.2.2 Allowing for stage 1 effects

Returning to (82), whereι2,t reflects the power of the stage 1 selection of impulses, the estimators
become:

E

[(
τ̃ 1

τ̃ 2

)]
'

[
T∑

t=1

(
E [ztz

′
t] E

[
ztι

′
2,t

]

E [ztι2,t] E
[
ι2,tι

′
2,t

]
)]−1 [ T∑

t=1

(
E [ztyt]

E [ι2,tyt]

)]

=

(
β0 −

(
I −R−1Σ22 (1 − r)

)
β1

R−1Σ22 (1 − r)β1

)
(84)

where:
R =

(
λλ′ + Σ22

)
r (1 − pd) + Σ22 (1 − r) .

The bias effect vanishes whenpd = 1 asR = Σ22 (1 − r). From (84):

V [τ̃ 2] =
σ2

u

T

([(
λλ′ + Σ22

)
pdr
]−1

+ R−1
)
,

so theF-test ofτ 2 = 0 has an expected value of:

E [Fτ2=0] = (T − 2n) (1 − r)2
β′

1Σ22R
−1

([(
λλ′ + Σ22

)
pdr
]−1

+ R−1

)−1

R−1Σ22β1

σ2
u (n− 1)

.

It is difficult to simply this further, but in the bivariate case, we have:

E
[
t2τ2=0

]
' Tpdβ

2
1

(
λ2 + σ22

)
r (1 − r)2 σ2

22

σ2
u (λ2r + σ22) [(λ2 + σ22) r (1 − pd) + σ22 (1 − r)]

=
pdσ22 (1 − r)σ2

e

σ2
u [(λ2 + σ22) r (1 − pd) + σ22 (1 − r)]

φ2
r,α.

7.2.3 Asymptotic power of the incorrect index invariance test

Now the fitted conditional model is the incorrect specification, assuming a known break:

yt = (τ ∗
1)

′
zt + τ∗2 ι1,t + e∗t (85)

with average estimated parameters:

E

[(
τ ∗

1

τ∗2

)]
=

[
T∑

t=1

(
E [ztz

′
t] E [ztι1,t]

E [ztι1,t] ι21,t

)]−1 [ T∑

t=1

(
E [ztyt]

E [ytι1,t]

)]

=

( (
λλ′r + Σ22

)
λr

λ′r r

)−1(
rλλ′ (β0 + β1) + Σ22 (β0 + rβ1)

r (β0 + β1)
′ λ

)

=

(
β0 + rβ1

λ′β1 (1 − r)

)
.

Although these estimators are inconsistent forβ0 andβ1 respectively, the important issue is the power
of the test on the relevance ofι1,t which yields forr 6= 0:

E
[
tτ∗

2
=0

]
=

√
Trλ′β1 (1 − r)

σe∗

√(
1 + rλ′Σ−1

22
λ
) =

√
Tλ∗′K−1β1 (1 − r)√

ω2 + β′
1 (K′)−1

K−1β1r (1 − r)
√(

1 + λ∗′λ∗
) = ψr,α,
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noting that:

e∗t = β′
0zt + β′

1zt1{t>T1} + et − (β0 + β1r)
′
zt − β′

1λ (1 − r) 1{t>T1}

= β′
1

(
zt

(
1{t>T1} − r

)
− λ (1 − r) 1{t>T1}

)
+ et

= β′
1

((
1{t>T1} − r

) (
λ1{t>T1} + v2,t

)
− λ (1 − r) 1{t>T1}

)
+ et

= β′
1v2,t

(
1{t>T1} − r

)
+ et

so:

σ2
e∗ = E

[
1

T

T∑

t=1

(
β′

1v2,t

(
1{t>T1} − r

)
+ et

)2
]

= ω2 + β′
1Σ22β1r (1 − r) .

Thus,ψr,α is again monotonic inλ∗, but need not be monotonic inr for fixed λ. Also, tτ∗

2
=0 is less

powerful thantτ2=0, asφ2
r,α > ψ2

r,α. Thus,φ2
r,α, the non-centrality of theF-test, which is applicable in

the present setting, has an important invariance to the source of the super-exogeneity failure, and should
exceedψ2

r,α: again this can be checked by the mean value in the Monte Carlosimulations, and the power
function calculations documented above.

7.3 Weak exogeneity failure under constancy

Reconsider the bivariate example in (56) above, but where all parameters are constant, so:

yt = β′zt + et = β′zt − (β − γ2)
′ (zt − µ2) + ηt (86)

with:
zt = µ2 + v2,t,

butE[et|zt] 6= 0 as:
et = ηt + (γ2 − β)′ v2,t

andE[ηt|zt] = 0. One mode of generating such a model is whenyt = β′ze
t + ηt, but the outcomezt is

used in place of the expectationze
t . Writing the fitted model as:

yt = τ0 + τ ′
1zt + ut (87)

then:

E

[
τ̂0

τ̂ 1

]
'

(
1 −µ′

2

−µ2 (µ2µ
′
2 + Σ22)

)−1(
β′µ2

µ2µ
′
2β + Σ22γ2

)

=

(
(β − γ2)

′µ2

γ2

)

soτ̂ 1 estimates the regression coefficientγ2 rather than the structural parameterβ, and correspondingly,
E[ztut] = 0 in (87).

Now only impulses corresponding to randomly largev2,t will be retained, of which there will beαT
on average. The index of these impulses again has the form:

wt =

αT∑

i=1

ϕ̂i,α1{t=ti},
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where:
ϕ̂i,α = v2,ti when |v2,ti | > cα.

Thus:

et = yt − τ0 − τ ′
1zt − τ2wt

= β′µ2 + γ′
2 (zt − µ2) + ηt − (β − γ2)

′ µ2 − γ′
2zt − τ2

αT∑

i=1

ϕ̂i,α1{t=ti}

= −τ2
αT∑

i=1

v2,ti1{t=ti} + ηt. (88)

Since the largest of thev2,ti in (88) are eliminated by settingτ2 = 0 to deliver the innovation component
ηt, there will be essentially no detectability of the failure of weak exogeneity.

8 Co-breaking based tests

A key assumption underlying the above tests is that the powerof impulse saturation tests to detect breaks
and outliers was not applied to the conditional. In many situations, investigators will have done precisely
that, vitiating the power of the direct super-exogeneity tests to detect failures. Conversely, one can utilize
such results for a deterministic co-breaking based test of super exogeneity.

Again considering the simplest case for exposition, consider adding impulses to the conditional
model, such that after saturation:

yt = βzt +

s∑

j=1

φj1tj + νt. (89)

At the same time, ifSα1
denotes the significant dummies in the marginal model:

zt = µ+
∑

i∈Sα1

δi1ti + ut (90)

then the test tries to ascertain whether the timing of the impulses in (89) and (90) overlaps. For example,
a perfect match would be strong evidence against super exogeneity, corresponding to the result above
that the significance of the marginal-model impulses in the conditional would reject super exogeneity.

9 Simulating the powers of automatic super-exogeneity tests

We undertaken simulation analyses for all three scenarios,first for a bivariate relation, then trivariate.

9.1 Failure of weak exogeneity under non-constancy

We begin by considering violations of super exogeneity due to a failure of weak exogeneity, that isβ 6= γ,
although invariance holds. Further we consider a level shift. The relationshipµ1,t = βµ2,t holds both in
the first regime and in the second regime, but:

µ2,t = λ1{t>T1} + µ2,0 (91)
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and so:
µ1,t = βλ1{t>T1} + βµ2,0 = βλ1{t>T1} + µ1,0 (92)

Henceβλ is the level shift in the mean ofyt at T1. We allow βλ to vary across our Monte Carlo
experiments to obtain results associated with level shiftsof different magnitudes. In particular,d =

λ/
√
σ22 takes the values1, 2, 2.5, 3 and 4. We also allowβ to vary across experiments to obtain

different degrees of departure from the weak exogeneity condition: in particular,β takes the values0.75,
1, 1.5 and1.75, where the first represents the strongest departure from theweak exogeneity condition
relatingβ andγ and the last represents the weakest violation of that condition. Finally, we also consider
different sample sizes (T = 100 andT = 300), break pointsT1, and the impact of different choices of
the significance level in the marginal and in the conditional. Throughout all Monte Carlo experiments,
M = 10000 replications were conducted. For the impulse saturation inthe marginal model, a partition
of T/2 was always used.

We investigate the three new types of automatic super exogeneity tests:

(1) a joint F-test in the conditional model, on the set of dummies added because they were signifi-
cant in the marginal (after single impulse indicator saturation of the marginal and retention of the
statistically significant indicators);

(2) at-test on the individual significance in the conditional model of an index formed using the retained
single impulse indicators in the marginal after its impulsesaturation (the index weights are the
estimated coefficients of the respective indicators in the marginal model).

(3) anF-test on the joint significance in the conditional of two indexes: one formed as described in the
previous paragraph and another one whose weights are the product of the weights in the previous
index, for each observation, by the value of the regressor weare conditioning on, for that same
observation.

We begin by investigating the first test. Table 1 reports the empirical mean rejection frequencies
of the null in the jointF-test when a sample size ofT = 300 is used and 5% significance levels are
employed both in the marginal and in the conditional models.The level shift occurs at observation251.
Hence, the second regime has a length ofk = 50, sor = 1/6. The power of the test increases with
the decrease inβ, as expected, since a smallerβ indicates a stronger violation of the weak exogeneity
condition. Furthermore, also as expected, the power of the test is increasing with the magnitude of the
level shift. Even mild violations of the null are easily detected for level shifts of2.5σ. The non-centrality
ϕ2

r,α in this bivariate case, from (75), is:

ϕ2
r,α =

kpd (β − γ)2 d2σ22

σ2
u (1 + d2r)

(93)

with powerpα = P
[
χ2

m (0) > h−1cα
]

where:

h =
k + 2ϕ2

r,α

k + ϕ2
r,α

and m =
k + ϕ2

r,α

h
. (94)

In table 2, we investigate the impact of reducing the length of the second regime tok = 25. All the
other defaults of the experiments leading to table 1 apply.

The previous conclusions still apply, but the empirical power is never smaller when the break length
diminishes, contrary to the prior theory: the degrees of freedom of theF-test must be playing a funda-
mental role here. This is partly the motivation to look into the second class of super exogeneity tests:
those based on an index replacing the indicators (see Hendryand Santos, 2005).
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d β = 0.75 β = 1 β = 1.5 β = 1.75

1.0 0.1910 0.1527 0.0777 0.0539
2.0 0.9722 0.9362 0.5289 0.1497
2.5 0.9999 0.9930 0.9173 0.3388
3.0 1.0000 1.0000 0.9985 0.6527
4.0 1.0000 1.0000 1.0000 0.9672

Table 1 Level shift atT1 = 251, T = 300, 5% used in marginal and conditional.

d β = 0.75 β = 1 β = 1.5 β = 1.75

1.0 0.3767 0.2742 0.0969 0.0601
2.0 0.9999 0.9968 0.8026 0.2376
2.5 1.0000 1.0000 0.9902 0.5045
3.0 1.0000 1.0000 1.0000 0.7970
4.0 1.0000 1.0000 1.0000 0.9839

Table 2 Level shift atT1 = 276, T = 300, 5% used in marginal and conditional.

To assess the impact of the choice of the significance levels,both in the marginal and in the con-
ditional, we consider the case where a more stringent significance is used in the marginal (α1 = 1%),
whilst 5% is still used in the conditional. We assume the remaining default settings, namelyk = 50

(where these are the last 50 observations of the sample). Table 3 reports results for only two values ofβ
as these are clear enough to highlight the conclusions.

d β = 1 β = 1.75

1.0 0.0850 0.0520
2.0 0.2894 0.0766
2.5 0.6802 0.1192
3.0 0.9647 0.2680
4.0 1.0000 0.8627

Table 3 Level shift atT1 = 251, T = 300, 1% used in marginal and 5% in conditional.

Results should be compared with the matching columns in table 1. The choice of a5% significance
level in the marginal, instead of a1% significance level, leads to a more powerful test, other things being
equal.

Table 4 investigates the use of a5% significance level in the marginal whilst a10% significance level
is used in the conditional, assuming the same defaults as table 3.

This choice of significance levels yields a more powerful test for super exogeneity. Empirical rejec-
tion frequencies are never smaller than the ones in table 1.

For these significance levels, the effect observed in table 2still occurs, namely a trade-off between
power and the length of the break that leads to cases where this type of failure of super exogeneity is
more difficult to detect by theF-test for longer breaks. Table 5 illustrates this for the case whereβ = 1.
The break in the underlying DGP is assumed to occur at observation T1 = 201 and hencek = 100. We
neglect the results for small level shifts.

We now turn to investigate the effect on power of the sample size. Table 6 reports the Monte Carlo
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d β = 0.75 β = 1 β = 1.5 β = 1.75

1.0 0.3063 0.2486 0.1462 0.1099
2.0 0.9878 0.9690 0.6604 0.2512
2.5 1.0000 0.9996 0.9570 0.4743
3.0 1.0000 1.0000 0.9920 0.7700
4.0 1.0000 1.0000 1.0000 0.9847

Table 4 Level shift atT1 = 251, T = 300, 5% used in marginal and 10% in conditional .

d β = 1

2.5 0.0972
3.0 0.7757
4.0 1.0000

Table 5 Level shift atT1 = 200, T = 300.

results obtained using the same settings as previously (namely with a significance level of5% in the
marginal model and a significance level of10% in the conditional model) whenT = 100. The level shift
is assumed to have occurred at observation 81, yieldingk = 20.

d β = 0.75 β = 1 β = 1.5 β = 1.75

1.0 0.1408 0.1306 0.1057 0.0960
2.0 0.5553 0.4944 0.2805 0.1487
2.5 0.8613 0.8189 0.5484 0.2306
3.0 0.9816 0.9719 0.8447 0.3910
4.0 0.9999 0.9999 0.9972 0.7267

Table 6 Level shift atT1 = 81, T = 100.

First, even for a sample size ofT = 100, the test has good power against mild violations of weak
exogeneity provided there is at least a level shift, even if not too steep (power is acceptable even for
β = 1.5 for a break of at least2.5σ).

Although results are not directly comparable (given that the percentage of observations in the second
regime differs, even if not greatly), there is a loss of powerwith the reduction of sample size. Further,
power continues to increase monotonically with the magnitude of the level shift and with the decrease
in β. The trade off between length of the break and power is also a feature of smaller sample sizes, as
illustrated in table 7, where a break of lengthk = 30 is assumed to begin at observation 71. Again, the
results for very small level shifts are negligible.

From table 7, the increase in the length of the break is reducing its power. However, moderate level
shifts (say3σ) allow the detection of violations of weak exogeneity with ahigh relative frequency.

We now investigate the empirical power of the index-based test. Table 11 reports the results for a
sample size ofT = 100, and for the DGP same parameter values: the shift occurs at observation 81,
implying k = 20.

The first conclusions concern comparing tables 11 and 6. First, although the index-based test has
higher empirical power for small shifts (magnitudesσ and2σ), the joint F test tends to do better for
shifts of higher magnitudes. Differences are, however, often too small to be significant, and on that basis
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d β = 0.75 β = 1 β = 1.5 β = 1.75

2.5 0.2602 0.2447 0.1736 0.1182
3.0 0.7078 0.6805 0.4857 0.2212
4.0 0.9969 0.9955 0.9672 0.5758

Table 7 Level shift atT1 = 71, T = 100.

T = 300 β = 0.75 β = 1 β = 1.5 β = 1.75

σ 0.0805 0.0654 0.0350 0.0263

2σ 0.7169 0.6119 0.2196 0.0618

2.5σ 0.9770 0.9534 0.6159 0.1431

3σ 0.9999 0.9995 0.9526 0.3724

4σ 1.0000 1.0000 1.0000 0.9084

Table 8 Level shift atT1 = 250, 2.5% used in marginal and conditional,F-test.

T = 100 β = 0.75 β = 1 β = 1.5 β = 1.75

σ 0.0267 0.0270 0.0257 0.0225

2σ 0.1144 0.0982 0.0540 0.0345

2.5σ 0.3920 0.3493 0.1590 0.0550

3σ 0.7572 0.7153 0.4336 0.1118

4σ 0.9956 0.9939 0.9491 0.4181

Table 9 Level shift atT1 = 80, 2.5% used in marginal and conditional,F-test.

T = 300 β = 0.75 β = 1 β = 1.5 β = 1.75

σ 0.0646 0.0530 0.0339 0.0266

2σ 0.6161 0.5565 0.2920 0.1032

2.5σ 0.9176 0.8905 0.6633 0.2578

3σ 0.9937 0.9903 0.9209 0.5307

4σ 1.0000 1.0000 0.9994 0.9085

Table 10 Level shift atT1 = 250, 2.5% used in marginal and conditional,t-test.

d β = 0.75 β = 1 β = 1.5 β = 1.75

1.0 0.1477 0.1390 0.1169 0.1094
2.0 0.5860 0.5462 0.3463 0.1860
2.5 0.8322 0.8024 0.5971 0.3025
3.0 0.9522 0.9444 0.8170 0.4730
4.0 0.9969 0.9951 0.9686 0.7228

Table 11 Level shift atT1 = 81, T = 100: index test.
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it would seem the index-based test does better. However, no test clearly dominates the other, for the
defaults used in this experiment.

Table 11 also deserves to be analyzed by itself. First, values for the power of the index-based test
(for shocks of magnitudes greater thanσ) are reasonable. The empirical power is decreasing asβ gets
closer toγ = 2, as expected. Furthermore, for the range considered (magnitudes up to 4σ) the power is
monotonically increasing with the size of the shift, for anyβ.

The index-based test is at-test on a single parameter, so its degrees of freedom do not depend on the
number of single-impulse indicators ‘picked up’ from the marginal model. Hence, it is not to be expected
that the test would face similar problems to those detected with the joint F-test, where a smaller break
length could be associated with higher power. Table 12 extends the analysis by consideringT = 300 and
k = 50. Results are to be compared with table 4.

d β = 0.75 β = 1 β = 1.5 β = 1.75

1.0 0.1932 0.1711 0.1217 0.1000
2.0 0.8661 0.8370 0.6209 0.3139
2.5 0.9874 0.9817 0.9011 0.5720
3.0 0.9997 0.9997 0.9891 0.8015
4.0 1.0000 1.0000 1.0000 0.9687

Table 12 Level shift atT1 = 251, T = 300: index test.

For this larger sample size, the jointF-test dominates the index based test in terms of power. The
only exceptions occur for some intermediate magnitudes when β = 1.75. In the following subsection,
we shall again come to the conclusion that the index test is generally less powerful than the jointF-test
for larger samples. On the basis of this, there seems to be no clear decision as to which test is better: one
will dominate in some cases, the other will dominate in othersettings.

Table 14 reports empirical power for the case where two indexes are used. A sample size ofT = 100

is considered. Results are to be compared with table 13 wherea single index is used, since sample sizes
are the same, and so are the significance levels used (2.5% both in the marginal and in the conditional). It
is clear that the single index dominates the use of two indexes (in terms of power) for this type of failure
of super exogeneity.

d β = 0.75 β = 1 β = 1.5 β = 1.75

1.0 0.0327 0.0314 0.0287 0.0244
2.0 0.2331 0.2069 0.1025 0.0475
2.5 0.5148 0.4712 0.2572 0.0930
3.0 0.7888 0.7541 0.5198 0.1918
4.0 0.9871 0.9813 0.9007 0.4924

Table 13 Level shift atT1 = 81, T = 100: index test, 2.5% significance.

If, instead, 5% significance levels are used in the marginal and 10% in the conditional, the empirical
rejection frequencies whenT = 100 andT = 300 are reported in tables 15 and 16, for the two indexes
test. Again, both refer to violations of super exogeneity due to a failure in weak exogeneity when
invariance holds but there is a level shift.

Even for these more liberal model selection strategies, power to detect this type of departure from
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d β = 0.75 β = 1 β = 1.5 β = 1.75

1.0 0.0273 0.0272 0.0253 0.0230
2.0 0.1524 0.1345 0.0707 0.0351
2.5 0.4284 0.3862 0.1956 0.0706
3.0 0.7417 0.7027 0.4425 0.1513
4.0 0.9821 0.9750 0.8774 0.4205

Table 14 Level shift atT1 = 251, T = 300: two-index test, 2.5% significance.

d β = 0.75 β = 1 β = 1.5 β = 1.75

1.0 0.1277 0.1235 0.1087 0.1052
2.0 0.4855 0.4453 0.2742 0.1515
2.5 0.7668 0.7328 0.5089 0.2452
3.0 0.9323 0.9153 0.7572 0.3956
4.0 0.9951 0.9928 0.9546 0.6484

Table 15 Level shift atT1 = 81, T = 100: two-index test, 5% significance in marginal and 10% in
conditional.

d β = 0.75 β = 1 β = 1.5 β = 1.75

1.0 0.1763 0.1575 0.1139 0.0980
2.0 0.8135 0.7772 0.5317 0.2494
2.5 0.9779 0.9681 0.8510 0.4820
3.0 0.9992 0.9986 0.9788 0.7200
4.0 1.0000 1.0000 0.9997 0.9469

Table 16 Level shift atT1 = 251, T = 300: two-index test, 5% significance in marginal and 10% in
conditional.
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super exogeneity is higher with the single index than with the two indexes (compare with tables 11 and
12 respectively).

9.2 Failure of invariance when weak exogeneity holds

We now consider a DGP where the null hypothesis of super exogeneity is false, but weak exogeneity
holds (that is:βt = γt,∀t). LetT ∗ be such that1 < T ∗ < T , and, fort < T ∗, let the DGP be given by:

(
yt

zt

)
∼ IN2

[(
2

1

)
,

(
21 10

10 5

)]
(95)

whilst for t ≥ T ∗, (
yt

zt

)
∼ IN2

[(
3µ∗2
µ∗2

)
,

(
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9 3

)]
. (96)

βt = γt even after the break, but sinceγt = σ12,tσ
−1
22,t, and the change inσ22 is not offset by the change

in σ12, the parameterφ1,t, which containsγt, is not invariant to changes in the parameter space of the
marginalφ2,t, which containsσ22,t.

For the Monte Carlo experiments, we work with the same settings as in the previous subsection. We
consider the same sample sizes as before:T = 100 andT = 300. We allowµ∗2 to take values from the
set{2, 2.5, 3, 4} implying a certain set of pairs of unconditional means. Finally, we also allow the break
length,k, to vary.

Table 17 reports the Monte Carlo results for a sample size ofT = 100. We always consider breaks
from a certainT ∗ until the end of the sample. Hence the break dates are:T = 81, T = 71 andT = 61

for k = 20, 30, 40 respectively.2

T = 100 k = 20 k = 30 k = 40

µ∗2 = 2.0 0.3982 0.4939 0.5503
µ∗2 = 2.5 0.5438 0.5998 0.5628
µ∗2 = 3.0 0.6810 0.6926 0.5605
µ∗2 = 4.0 0.9108 0.8527 0.5342

Table 17 Invariance failure,T = 100.

Table 17 reveals that the test has good power even for a small sample. An increase in the length of the
mean shift fromk = 20 to k = 30 increases the rejection frequency of the null. Nonetheless, a further
increase of equal absolute magnitude in the length of the break can reduce power (for greater level shifts)
and loses the monotonicity property (power does not increase with the size of the shift fork = 40).

In table 18, we maintain the default settings of the Monte Carlo experiment of the previous table, but
we consider a sample of sizeT = 300. We consider breaks at observationsT ∗ = 261, T ∗ = 251, T ∗ =

201 andT ∗ = 161, matching respectively the valuesk = 40, 50, 100 and140 considered in table 18.
The remarkable feature is the good power against this failure of super exogeneity, for all break lengths

(which are in some cases always less or equal to a third of the sample size) and even for the smallest
mean shifts considered.

2Tables 17 and 18 use a 5% significance level in the marginal model and a 10% significance level in the conditional.
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T = 300 k = 40 k = 50 k = 100 k = 140

µ∗2 = 2.0 0.5413 0.6008 0.8161 0.8980
µ∗2 = 2.5 0.7404 0.7968 0.8907 0.8157
µ∗2 = 3.0 0.8963 0.9288 0.9456 0.6800
µ∗2 = 4.0 0.9973 0.9991 0.9910 0.2878

Table 18 Invariance failure,T = 300.

Notwithstanding, table 18 also highlights the problem we had discussed for smaller sample sizes:
the length of the break adversely affects the power to detectdepartures from super exogeneity whenk
becomes ‘too big’. In the case discussed in table 18, this is clear for k = 140. A set of results not
reported here indicates that fork = 125, the same reverse effects on power might already be present.

T = 100 k = 20 k = 30 k = 40

µ∗2 = 2 0.1874 0.2181 0.2400

µ∗2 = 2.5 0.2864 0.2891 0.2496

µ∗2 = 3 0.4063 0.3712 0.2558

µ∗2 = 4 0.6730 0.5352 0.2584

Table 19 Invariance failure,T1 = 0.8T = 80, F-test, 2.5%.

T = 300 k = 40 k = 50 k = 100 k = 140

µ∗2 = 2 0.2885 0.3326 0.4506 0.5746

µ∗2 = 2.5 0.4643 0.5062 0.5719 0.4930

µ∗2 = 3 0.6726 0.7138 0.6969 0.4152

µ∗2 = 4 0.9527 0.9644 0.8795 0.2382

Table 20 Invariance failure,T1 = 240 T = 300, 2.5 per cent,F-test .

We now look at the empirical rejection frequencies of the null for the index-based test. We consider
only the case whereT = 300. The same defaults as in the previous experiment are used in the Monte
Carlo, namely significance levels of 5% and 10%. Table 21 reports the results.

Comparing tables 21 and 18 shows that the jointF-test dominates the index-based test (with the
exception of the two largest unconditional mean shifts fork = 140). The power of the index-based test
is only acceptable for level shifts of length greater than some threshold.

However, in spite of the power dominance of the jointF-test over the index test, it is nonetheless true
that the power properties of the index test are worth while: power increases monotonically both with the
mean shift and with the break length (this last claim could not be made for the jointF-test as referred to
above).

It remains to investigate the effects on power of using a conditional model with two indexes: as
explained earlier, the first index,ι1, is the usual index where the weights are the dummy coefficients for
the significant dummies in the marginal; whilst the second index, ι2, uses as weights the products, for
each observation, of the respective indicator coefficient estimate in the marginal (if significant) and its
observed value for the variable we are conditioning on,zt.
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T = 300 k = 40 k = 50 k = 100 k = 140

µ∗2 = 2.0 0.2016 0.2095 0.2591 0.3167
µ∗2 = 2.5 0.2802 0.2916 0.4034 0.5691
µ∗2 = 3.0 0.3602 0.3836 0.6483 0.8358
µ∗2 = 4.0 0.5725 0.6608 0.9793 0.9967

Table 21 Invariance failure, index test,T = 300.

Adding the two indexes to the conditional model, with parametersϕ1 andϕ2, the null hypothesis is:

H0 : ϕ1 = ϕ2 = 0 (97)

which can be tested using the usual statistic with null distribution F with 2 degrees of freedom.
We consider the same departures from invariance as for the previous cases in this section, and the

same break lengths. A significance level of 2.5% is used in both the marginal model and in the conditional
model. Results are reported in tables 22 and 23 with respect to sample sizes ofT = 300 andT = 100,
respectively.

T = 300 k = 40 k = 50 k = 100 k = 140

µ∗2 = 2.0 0.2257 0.2604 0.4329 0.5453
µ∗2 = 2.5 0.3321 0.3838 0.5285 0.6640
µ∗2 = 3.0 0.4518 0.5020 0.6521 0.8363
µ∗2 = 4.0 0.6300 0.6653 0.9339 0.9939

Table 22 Invariance failure, two-index test,T = 300.

T = 100 k = 20 k = 30 k = 40

µ∗2 = 2.0 0.2440 0.3471 0.4874
µ∗2 = 2.5 0.3526 0.4562 0.5923
µ∗2 = 3.0 0.4829 0.5765 0.7087
µ∗2 = 4.0 0.7630 0.8243 0.9176

Table 23 Invariance failure, two-index test,T = 100.

Tables 22 and 23 should be compared with tables 25 and 24, respectively, which report the empirical
rejection frequency of the null for the cases where the simpler index is used in the conditional and where
significance levels of 2.5% are used in the marginal and the conditional.

The two-index test has greater power to detect departures ofsuper exogeneity for invariance failure,
than the corresponding single index tests. This claim is valid, irrespective of the choice of significance
levels. Tables 26 and 27 confirm this by reporting the empirical power for a sample size ofT = 100

when a 5% significance level is used in the marginal model and a10% significance level is used in the
conditional.
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T = 300 k = 40 k = 50 k = 100 k = 140

µ∗2 = 2.0 0.0957 0.1016 0.1249 0.1601
µ∗2 = 2.5 0.1490 0.1576 0.2060 0.3335
µ∗2 = 3.0 0.2260 0.2472 0.3964 0.6473
µ∗2 = 4.0 0.4241 0.4755 0.8746 0.9829

Table 24 Invariance failure, index test,T = 300, 2.5% significance.

T = 100 k = 20 k = 30 k = 40

µ∗2 = 2.0 0.1008 0.1175 0.1270
µ∗2 = 2.5 0.1478 0.1557 0.1570
µ∗2 = 3.0 0.2106 0.2139 0.2480
µ∗2 = 4.0 0.3642 0.4276 0.5742

Table 25 Invariance failure, index test,T = 100, 2.5% significance.

T = 100 k = 20 k = 30 k = 40

µ∗2 = 2.0 0.6929 0.8346 0.9268
µ∗2 = 2.5 0.7883 0.8985 0.9603
µ∗2 = 3.0 0.8721 0.9435 0.9791
µ∗2 = 4.0 0.9767 0.9932 0.9982

Table 26 Invariance failure, two-index test,T = 100, 5% significance in marginal and 10% in condi-
tional.

T = 100 k = 20 k = 30 k = 40

µ∗2 = 2.0 0.2074 0.2424 0.2664
µ∗2 = 2.5 0.2734 0.3067 0.3414
µ∗2 = 3.0 0.3429 0.4017 0.4928
µ∗2 = 4.0 0.5403 0.7031 0.8344

Table 27 Invariance failure, index test,T = 100, 5% significance in marginal and 10% in conditional.
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9.3 Failure of weak exogeneity under constancy

Finally, we consider a departure from super exogeneity due to a failure in weak exogeneity (β 6= γ)
alone, when invariance holds and there is no level shift. We consider the following alternative DGP:

(
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)
∼ N2
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β∗

1
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,
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21 10

10 5

)]
. (98)

We allow β∗ to take values from the set{0.5, 0.75, 1, 1.25, 1.5, 1.75}, β∗ 6= γ whenγ = 2. All the
default settings from previous experiments apply. Table 28reports the results for sample sizes ofT =

100, 200 and300.
In table 28, apart from the empirical rejection frequencies, we also include the empirical significance

level in the conditional (αc) for each sample size, when the nominal significance level inthe conditional
is 10%.

T = 100 T = 200 T = 300

β∗ = 0.50 0.096 0.0974 0.1009
β∗ = 0.75 0.096 0.0974 0.1009
β∗ = 1.00 0.096 0.0974 0.1009
β∗ = 1.25 0.096 0.0974 0.1009
β∗ = 1.50 0.096 0.0974 0.1009
β∗ = 1.75 0.096 0.0974 0.1009

αc 0.096 0.0974 0.1009

Table 28 Failure of weak exogeneity under constancy,T = 100.

As expected, the test has virtually no power against this form of failure of the weak exogeneity
hypothesis. Indeed, averaging acrossM = 10000 replications, we conclude that the mean rejection
frequency is the same for any value ofβ∗ considered, and virtually the same as it would be the case for
β∗ = β = γ = 2, the value under the null of weak exogeneity. Hence, the empirical power is equal
to the empirical significance level, meaning the test has no power to detect this form of failure of super
exogeneity.

9.4 Optimal infeasible-test power

The optimal infeasible test differs from those analyzed above in that the location of the breaks in the
marginal proccess is known. Thus, there is no need to impulsesaturate the marginal and retain the
relevant impulses. Rather (for the jointF-test, say), one tests in the conditional a set of single impulse
indicators, each of which corresponds to an observation within the break period in the marginal proccess.
In the tables below we use a 2.5% significance level for testing in the conditional.

Hence, the empirical rejection frequencies are the empirical proxies of maximum achievable power
for the relevant sample sizes hereT = 100. The break is known to be a mean shift starting at observation
T1 = 80, so 20 single impulse indicators are included in the conditional model. Table (29) refers to the
case of no weak exogeneity (and no constancy), but with invariance holding. Table (30) refers to the case
of invariance failure but with weak exogeneity holding.

Relative to the optimal infeasible test, the automatic tests based on saturation of the marginal natu-
rally lose a signifcant power for breaks of small magnitudes.
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T = 100 β = 0.75 β = 1 β = 1.5 β = 1.75

σ 0.9999 0.9941 0.4040 0.0831

2σ 1.0000 1.0000 0.9301 0.2467

2.5σ 1.0000 1.0000 0.9730 0.3258

3σ 1.0000 1.0000 0.9851 0.3803

4σ 1.0000 1.0000 0.9881 0.432

Table 29 Level shift atT1 = 80, 2.5% test in conditional,F-test: break location known.

T = 100 k = 20 k = 30 k = 40

µ∗2 = 2 0.9977 0.9985 0.9964

µ∗2 = 2.5 0.9995 0.9998 0.9983

µ∗2 = 3 0.9999 0.9999 0.9990

µ∗2 = 4 1.0000 1.0000 0.9992

Table 30 Invariance failure,T1 = 80, 2.5%F-test: break location known.

The optimal test has power increasing with the length of the break for breaks of magnitudeσ and2σ,
and a failure of weak exogeneity whereβ = 1.75 At T = 100, wherek is the length of the break, we
obtain table (31).

T = 100 k = 45 k = 40 k = 30 k = 20 k = 15 k = 10 k = 5

σ 0.5720 0.5633 0.5145 0.4232 0.3477 0.2590 0.0725

2σ 0.9418 0.9376 0.9199 0.8801 0.8280 0.7198 0.4837

Table 31 Weak exogeneity failure,T = 100, optimal test, 2.5%, break location known.

The optimal test exhibits the predicted behaviour from the theory section: power increases with the
break length.

10 Monte Carlo experiments with n = 3

In this section, we conduct some Monte Carlo experiments to assess what happens with the tests when
the DGP is the three-dimensional normal distribution:
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which could also be expressed as:
(
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(100)

wherezt andµ2 are2 × 1 vectors mn2 × 1 vectors,σ12 is a1 × 2 row vector andΩ22 is the variance-
covariance matrix ofzt. Under the null of super exogeneity, weak exogeneity and invariance must hold.
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Weak exogeneity entails thatβ = γ = Ω−1

22
σ12, which in this case is:

β =

(
14/16

−3/16

)
. (101)

As µy = β′µ2, the unconditional mean ofyt is µy = 19/16 = 1.1875, whereas the conditional variance
of yt|zt is given by:

σ11 − σ′
12Ω

−1

22
σ12 = ω2 = 1/16. (102)

These conditions guarantee super exogeneity of the parameters of the conditional modelyt|zt, with
respect to changes in the parameters of the marginal model for zt.

In the Monte Carlo experiments,M = 10000 replications with sample sizes ofT = 100 and300

(albeit we focus onT = 100 to highlight the crucial features of the tests whenzt is not a scalar).
Throughout, we use 2.5% significance levels for both in the impulse saturation stage in the marginal, and
in testing in the conditional.

10.1 Weak exogeneity failure under invariance for level shifts

We consider the blockF-test on the dummies retained from each of the marginal processes, and the
single-index test, using two index variables: one for each of the impulses retained from the location-
scale models forz1,t andz2,t. For the blockF-test, the relevant econometric model is:

yt = η + β1z1,t + β2z2,t+
∑
S1

φtDt+
∑
S2

ζtDt + ut (103)

where it is assumed thatut ∼ N
[
0, σ2

u

]
, S1 andS2 are the sets of indicators retained in the location-scale

models for the first and second elements of thezt vector.
For the single-index based test, we use the econometric model:

yt = θ + δ1z1,t + δ2z2,t + π1I1,t + π2I2,t + vt (104)

The weights inI1,t and I2,t are the estimated single impulse indicators’ coefficients in the impulse-
saturated location-scale models ofz1,t andz2,t respectively. Again, we assume thatvt ∼ N

[
0, σ2

v

]
. In

(104), the super-exogeneity test based on the single-indexis also anF-test, with null hypothesis:

H0 : π1 = π2 = 0 (105)

hence having two degrees of freedom. For the first super-exogeneity test considered above, the null
hypothesis is that all single impulse indicators’ coefficients are zero.

Here, we violate super exogeneity by losing weak exogeneity, so consider DGPs whereβ 6= γ, using
three alternative values forβ:

β1=

(
2.5

−2

)
; β2=

(
2

−1

)
; β3=

(
0.5

−0.25

)
(106)

implying, respectively,µy = −1, µy = 1 andµy = 0.25, so thatµy = β′µ2 and invariance hold. We
also allow for the existence of level shifts in the marginal proccess. For simplicity, we assume the level
shifts occur for bothz1,t andz2,t on the same dateT1, are of the same magnitude, and only look at a
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d β1 β2 β3

1.0 0.0474 0.0773 0.0902
2.0 0.4776 0.6782 0.7455
2.5 0.8422 0.9428 0.9614
3.0 0.9856 0.9968 0.9987
4.0 0.9999 1.0000 1.0000

Table 32 Index test conditioning on two regressors,T = 100.

sample size ofT = 100 with the break start atT1 = 81, implying the break lengthk = 20. We consider
break magnitudes of

√
5, 2

√
5, 2.5

√
5, 3

√
5 and 4

√
5 asσ22 = 5. Table 32 reports the rejection

frequencies for these values ofβ and magnitudes of the level shift.
The results in table 32 reflect prior expectations. In particular, the empirical power of the test is

increasing with the magnitude of the level shift. Let the magnitudes of the level shifts be stored in a
column vectorλ of dimensions2 × 1 (in our case, wheren = 3), then power is increasing with the
absolute value of(β − γ)′ λ. Hence, noting that:

∣∣(β1−γ)′
∣∣ <

∣∣(β2−γ)′
∣∣ <

∣∣(β3−γ)′
∣∣ (107)

the test behaves according to theory: for each column vectorof magnitudeλ , the empirical power of the
test increases fromβ1toβ2 and then toβ3.

Table 33 reports the rejection frequencies for the blockF-test. A preliminary Monte Carlo experi-
ment, under the null hypothesis, showed that the nominal significance of2.5% was well approximated
by an empirical rejection frequency of the null of2.34%. In table 33, we only consider values for the
break magnitude greater or equal to2σ, as smaller magnitudes yield very small values for the empirical
power.

d β1 β2 β3

2.0 0.0663 0.1738 0.2292
2.5 0.2343 0.5058 0.5983
3.0 0.5512 0.8303 0.8869
4.0 0.9238 0.9933 0.9960

Table 33 Block F-test conditioning on two regressors,T = 100.

Results in table 33 again confirm that the properties of the block F-test do not seem to be affected
by the existence of additional regressors to condition on. The empirical power of the test behaves as
it should from a theory point of view: increasing with the magnitude of the level shift for eachβ; and
increasing fromβ1 to β2 and from this toβ3 for eachλ. The empirical rejection frequencies are high
for shifts of at least2.5σ. For bigger magnitudes, the test has quite good power against failures of super
exogeneity due to lack of weak exogeneity.

In conclusion, both the single-index test and the blockF-test behave well in terms of power when
n = 3, that is when the single equation model is conditioningyt on more than one variable. This holds
when the alternative of no super exogeneity is due to a failure in weak exogeneity. We only look at these
two tests because it was the case forn = 2 that the double-index test did not add power for this type of
failure of super exogeneity.



41

10.2 Failure of invariance with weak exogeneity

Consider the following DGP for the firstT − k observations in the sample:



yt

z1,t

z2,t


 ∼ N3







1.1875

2

3
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1 2 4
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wherek = 20, and henceT1 = 81. FromT1 to T (which we assume to beT = 100), the DGP will
instead be:

(
yt

zt

)
∼ N3
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2
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2
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Then:
γ′ = σ′

12Ω
−1
22

=
(

9/13 −1/13
)

(110)

and since weak exogeneity holds:

γ = β =

(
9/13

−1/13

)
. (111)

As Ω22 changes,γ changes. Since,γ ∈ φ1,t, the parameter space of the conditional model, andΩ22 ∈
φ2,t, the parameter spaces of the variables we are conditioning on, φ1,t is not invariant toCφ

2,t , which
is the class of interventions onφ2,t. Since invariance does not hold, super exogeneity fails from T1

onwards.
In the DGP for the last 20 observations, the unconditional vector of means ofzt has changed toµ∗

2.
We consider four possible DGPs for these last 20 observations. The variance-covariance matrix is always
as in (109), but with four possible vectors forµ∗

2, and since weak exogeneity holds, four possible values
for µy. In particular, we consider as vectors of unconditional means for the DGP in (109) those in table
34.

Shift

µ∗
2 = 2.0µ2

(
2.307692308 4 6

)

µ∗
2 = 2.5µ2

(
2.884615385 5 7.5

)

µ∗
2 = 3.0µ2

(
3.461538462 6 9

)

µ∗
2 = 4.0µ2

(
4.615384615 8 10.2

)

Table 34 Vectors of unconditional means in four DGPs.

We now consider three tests for invariance: the blockF-test; one based on the single-index (which
makes use of two indexes as we are conditioning onn − 1 > 1 variables); another based on the double
index: along with the indexes in the previous section, another two indexes are considered (making a total
of four index variables), each of these refers to one of the marginal regressors and is the product, for each
observation, of the respective value of that marginal regressor and the estimate of the single impulse
coefficient for that observation in tha marginal location-scale model for that regressor (if this was found
to be significant when the location scale model was impulse saturated).
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The econometric model on which the double index test is basedis given by:

yt = κ0 + κ1z
t
1 + κ2z

t
2 + ρ1I1,t + ρ2I2,t + ρ3I3,t + ρ2I4,t + νt (112)

whereI3,t and I4,t are the new indexes with respect to the single-index versionof the test. The null
hypothesis is

H0 : ρ1 = ρ2 = ρ3 = ρ4 = 0 (113)

which entails4 restrictions instead of2.
Table 35 reports the empirical rejection frequencies of thenull for the single-index test, the double-

index test and the blockF-test, for each of the four DGPs, given the sample size we are considering and
the use, in the marginal and in the conditional, of a 2.5% significance level.

T = 100 single double block F
µ∗

2 = 2.0µ2 0.2702 0.3515 0.6067
µ∗

2 = 2.5µ2 0.3359 0.4448 0.8712
µ∗

2 = 3.0µ2 0.3639 0.5056 0.9733
µ∗

2 = 4.0µ2 0.384 0.5679 0.9985

Table 35 Invariance tests when weak exogeneity holds,T = 100.

The noticeable conclusion from table 35 is that, as occurredwith n−1 = 1, the double index performs
better in terms of empirical power than the single index, when testing the null of super exogeneity in a
setting where the alternative is due to a failure of invariance rather than weak exogeneity.

The empirical powers observed for the single index are relatively low. Notwithstanding, for moderate
level shifts (say,3µ2) the empirical power is acceptable when the double-index test is used.

Table 35 also clarifies that the blockF-test dominates the others in terms of empirical rejection
frequencies. It exhibits very reasonable empirical power for level shifts of all magnitudes considered.
This dominance did not occur forn = 2.3

11 Conclusion

The concept of automatically computable tests for super exogeneity based on selecting from impulse
saturation of the marginal process to test the conditional is clearly realisable. The tests proposed here
have the correct null rejection frequency in constant conditional models when the nominal size is not
too small in the marginal at small sample sizes (e.g. 5%), fora variety of marginal processes, both
constant and with breaks. The tests also have power against failures of super exogeneity when either of
invariance or weak exogeneity fails and the marginal process changes. Neither class of tests uniformly
dominates the other. Their approximate power functions were derived analytically for regression models
and explain the simulation outcomes well.

While all the derivations and Monte Carlo experiments here have been for static regression equations,
the principles are general, and should apply to dynamic equations (probably with more approximate null
rejection frequencies) and to non-stationary settings: these are the focus of our present research.

3It should be stressed that withn > 2, neither of these tests behaves well with the break length. Results not reported here
reveal lower empirical rejection frequencies fork > 20, for all level shifts.
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