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Abstract

Stock and Watson (1998 and 1999) developed a factor-model approach which allows
for large data sets to be systematically summarized by to a few explanatory factors.
In this paper two other methods are proposed. The first one, Partial Least Squares is
imported from the Chemometrics literature. The second one, which is based on the
Combination of Forecasts literature is a modification of Stock and Watson’s method.
We call it Principal Components Combination. These methods are compared in an
empirical application to inflation. It is found that overall the Principal Components
Combination performs the best.
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1 Introduction

With enormous amounts of new information, on several economic indicators, arriving in
real time, applied Macroeconomists have the problem of dealing with huge data sets, with
hundreds of explanatory variables that can be useful for forecasting purposes. Usually, we
have, at most, a few hundred observations, making the use of so many variables impossible

in a single regression model. Even with financial data, where much longer time series may
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easily be found, it is of dubious interest to consider hundreds of regressors. Nevertheless, it
is inefficient not to use all available information. More information should be helpful, not a
problem.

One popular method to deal with this problem of many explanatory variables is the
Principal Components Regression (PCR), which was applied by Sargent and Sims (1977)
and Geweke (1977). More recently, this method has been successfully applied to US Macro-
economic data (Stock and Watson (1998, 1999, and 2002)), Bernanke and Boivin (2003).
Marcellino, Stock and Watson (2003) also applied this method to European data, but there
the Principal Components Regression could not consistently improve upon a simple Auto
Regression model.

This literature is growing, and some nice asymptotic results have already been derived
— see Stock and Watson (1998), Forni, Hallin, Lippi, and Reichlin (2000) and Bai and Ng

(2002). Still, some criticisms to this approach remain:

e the results are very sensitive to the scale measurement of the variables, and

e the principal components are constructed without taking into consideration any rela-

tionship between the regressors and the dependent variable.

One method, which tries to overcome the second problem is the Partial Least Squares
(PLS). This method, popular in the Chemometrics literature, was proposed by Wold (1975).
PLS became popular during the 80’s and, a decade later, several papers appeared in the
Statistics literature, analyzing the properties of this method. Although popular among
chemometricians, this method has never become popular among econometricians and econo-
mists. An exception is Gibson and Prisker (2000) who applied this method to economic
data.

A different branch of literature is the Combination of Forecasts proposed by Bates and
Granger (1969) — see also Granger (1989) and Deutsch, Granger and Terdvirsta (1994).
This literature deals with the problem of having multiple forecasts for the same variable.
These authors, and others, argue that combining the different forecasts in a suitable manner
leads to better predictions than the individual ones. Bates and Granger (1969) argued that
a simple way to combine the different forecasts is to run a simple regression (OLS) to find
the best combination. Note that if one has a large number of forecasts then simple OLS will
not be appropriate. Chan, Stock and Watson (1999) make the argument that a suitable way
to combine a large number of different forecasts is by PCR.

As an alternative to PCR and PLS, we will combine PCR with the forecast combination
approach. More specifically, we will use each explanatory variable to obtain a forecast for the

dependent variable, and then combine a large number of forecasts using the PCR method.
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The proposed method has two advantages: it is scale invariant, thereby dealing with the first
criticism, and it takes into consideration the explanatory power of the independent variables
on the dependent variable. There is also a third advantadge, which is left for future research,
we don’t need to restrict ourselves to linear models when we produce the forecasts, so this
method has more modelling flexibility than PCR or PLS.

The rest of the paper is organized as follows: section 2 sets up the basic model, and
describes and relates two well-known estimation methods: PCR and PLS. In section 3, a
new method is proposed: PCC. In section 4 the different methods are applied to inflation

forecasting and compared. Section 5 concludes.

2 The Model

Let the basic data be given by X = (21, ..., zy), a matrix of T’ observations of N independent
variables, and y, a vector with 7' observations of the dependent variable. To facilitate
interpretation, we assume that all the variables have already been demeaned.

Consider a factor model of the form:

Tp =M1 F1 + -+ Ak Fx + ey n=1,...N

(T'x1) (1x1)(Tx1) (1x1)(T'x1) Tx1
y =B Fi +-+ B Fx + ¢
(Tx1)  (1x1)(Tx1) (ax1)(rx1)  Tx1

or, stacking the vectors together:

= A+ e
(TxN) (TxK)(KxN) TxN

y = F B + ¢
(Tx1) (TxK)(gx1) Tx1

(1)

The crucial assumption of this model is that y depends on X by only a few unobserved
factors F'. A factor model of this type is useful when the number of predictor variables is
large (possibly larger than T"), making more common forecasting techniques unattractive or
not feasible. Since F’ may contain lagged values of the underlying factors, this model is also
called a dynamic factor model.

A natural way to estimate the parameters of the second equation of system 1 is to replace
the unobservable factors by estimated factors, and then estimate 3 by Ordinary Least Squares
(OLS).

In the next subsections of the paper we consider two different methods to estimate the

unobserved factors:

e Principal Components Regression (PCR), and
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e Partial Least Squares (PLS).

The first is becoming increasingly popular among econometricians, while the latter is
most popular in the Chemometrics literature. We will then propose a modification of the
PCR based on the forecast combination literature. This modification follows the spirit of
PLS (by taking into consideration the effect of each predictor for the dependent variable)

but essentially uses the analytical tools of PCR, with the advantage of being scale invariant.

2.1 Principal Components Regression

If the model described above is correct, a possible procedure is to use the principal compo-
nents of X as an estimate of the factors, and use them to estimate the second equation of
system 1.

As Stone and Brooks (1990) showed, the idea of this method is to find the linear combi-
nations of the X variables, such that a vector of weights, p;, maximizes p’ X’ Xp, and then
pe is chosen to maximize p’ X’ Xp subject to the constraint that p'p; = 0. The vectors of
weights are normalized to have unit distance. Thus p; is the normalized eigenvector of X'X
associated with the largest eigenvalue, ps is the normalized eigenvector associated with the
second largest eigenvalue, and so on.

By choosing the components associated with the largest eigenvalues, one obtains the lin-
ear combinations of X that are orthogonal to each other and simultaneously have the largest
variance. Intuitively, by choosing linear combinations with the possible largest variance, one
is, in a certain sense, maximizing the information contained in those linear combinations.
When carrying out the empirical applications, we discuss how to estimate the numer of
factors.

Stock and Watson (1998), Forni et al. (2000) and Bai and Ng (2002) provide consistency
results for this method. The asymptotic theory of this method assumes not only 7" — oo but
also N — oco. For example, Bai and Ng assume that E ||F}||* < co and %ZL F/F, — Xp
as T — oo, with ¥ being some positive definite matrix. They also assume that each factor
has a nontrivial contribution to the variance of X: H LN’\ — DH — 0as N — oo, with D being
some positive definite matrix, and ||\,|| < A < oo. They further impose some conditions
on the error terms of the X variables, allowing for heteroskedasticity in both time and cross
section dimensions and some dependence between factors and the errors. Bai and Ng (2002),
and Stock and Watson (1998) with a different set of assumptions, show that, asymptotically,

the estimated factors and the true factors span the same space.



2.2 Partial Least Squares

Using PCR only the information contained in the X —data is used to estimate the factors. Not
all the information is used, as the relationship to the dependent variable is not considered.

PLS first appeared in the form of an algorithm (which is described bellow). Stone and
Brooks (1990) showed that with PLS a vector of weights p; is chosen to maximize p' X'yy’ X p,
then ps is chosen to maximize p’ X'yy’' X p subject to the constraint that p/(X'X)p; = 0. So
one is finding the linear combination of the X variables which maximizes the squared sample
covariance between X and y. Although PLS deals with the second criticism to PCR, it fails
to address the first, as it is scale dependent as well. The usual procedure is to normalize all
the variables to have unit variance. By doing this, maximizing the squared sample covariance
amounts to maximizing the squared sample correlation.

There are at least two algorithms (one proposed by Wold (1975) and the other proposed
by Martens (1985)). Helland (1988) proved the equivalence between them and also proposed
a third method, which is computationally more convenient. Next we will describe the algo-
rithm that Wold (1975) proposed and, after that, the alternative basis that Helland (1988)
proposed. For a description of both algorithms and the proof of their equivalence and also
the equivalence of the alternative basis, the reader is referred to Helland (1988). For some

consistency results of PLS the reader can consult Naik and Tsai (2000)".

2.2.1 The original PLS algorithm

Define Ey = X and fy = y. Define E, and f, recursively as:

E,=E,,—E\

.. 2
fa:fafl_Faﬁa ( )

where F stands for the factor estimate.
We will need to determine ﬁ’a, Ao and Ba in these equations. As with the Principal
Components approach, each estimated factor E, will be a linear combination of the X

variables. For example, for a« = 1 we have:

N
Fy = E TpPn1 = X 1 (3)
Tx1  f={Txlixi  TxNyxi

Since we would like to use the information contained in y to estimate the factors the

! Assuming that the explanatory variables are i.i.d.,these authors prove consistency of the PLS for T — oc.
Extension to stationary variables is immediate.



weights will be chosen as:
pr=X"y (4)

With this method, explanatory variables with a higher covariance with Y will receive a higher
weight.

In general we have:

Fa - Eaflpa (5)
Pa = Eéhlfa—l (6)

We still need to determine A, and 3,. To have the best fit in equation (2) we use the

regression coefficients. For a = 1 we have y = Fl/;l +fiand X = ﬁ’l;\/l + FE1, so the regression

N Aoa\ 1 A N PP N SN
coefficients are given by 3, = <F1’F1) y1 F1, and /\/1 = (F{F1> F{X. In general we have:

o ~ A\ 1 A
A = (FF) E_F, (7)
o A A\ 1 A
A G ®)

Note that since the F}’s are orthogonal to each other (again see Helland (1988)), instead

of equations (7) and (8) we can use:
N oA\ 1 A
A = (F’F) X'F,
A ~oAN\N—1
B = (B2F) oE.
With this method, the first factor to be estimated is £} = (X)(X'y). So instead of finding

TxN Nx1
the linear combination of the X variables that maximizes the variance, one is using the

covariance between each predictor and the dependent variable as the weight of that variable.

Then the second factor will be estimated using the covariance between (X — }%15\,1) and

(y — Fﬂ]i), and so on.

2.2.2 An alternative basis

The next proposition allows us to use a computationally more convenient
method.

Proposition 1 Let Sy be the space spanned by pi,...pa. As long as pa is nonzero, an
alternative basis for Sy is given by the vectors (X'y), (X'X) (X'y), ..., (X’X)* 1 (X'y).



Proof. See Helland (1988) or Stone and Brooks (1990). =
This algorithm is computationally easier to implement than the original one proposed by

Wold (1975), without requiring any iterative procedure.

2.3 Prediction, spectral representation and relation between PLS
and PCR

For a moment, let us consider a population version of the model described in system 1, where
there is no noise.

Consider the spectral decomposition of S = X'X = Zszl ©LDEPL, Where py is the eigen-
vector associated with the strictly positive eigenvalue ¢, (assuming that X’X has rank K).

Using the principal components regression, the predicted value for y is given by:
g = F(FF)Fy

K
—1
= )Xo (0 X' Xpe) 1 (X'y)
k=1
For prediction purposes all the non-relevant eigenvectors of X’X can be deleted. Also, if
an eigenvalue has multiple eigenvectors associated with it, the corresponding terms can be
substituted by only one term by rotating in eigenspaceswith equal eigenvalue, such that we

get only one eigenvector. For example, suppose that \; = A9, then we can replace p; and

p2 by pf = ( pl)’zlzp%)Q)%) (X'y). Note that pi'p1 = 1, and piph (X'y) + paph (X'y) =
pis) +(phs
pipy’ (X'y).

Definition 2 The relevant eigenvectors of X'X to predict y are the ones associated with
different eigenvalues which satisfy p\.(X'y) # 0. The corresponding factors Fy, = Xpy. are the

relevant factors in X for prediction of y. Let A be the total number of relevant eigenvectors.

Proposition 3 The population PLS space has dimension A, and when this minimal number
of terms is used, the population PLS regression vector and the population PCR regression

vector are equivalent.

Proof. See Helland 1990. =

This proposition tells us that the PLS and PCR regression vectors are equivalent when
all the relevant components are included. Some stopping rule must be defined when applying
the algorithm and hence the previous results will only be approximate: with real and noisy
data it is highly unlikely that we find exact repeated values for the eigenvalues or that

P, (X"y) = 0 (the sample relevant components will be very close to min (N, 7T — 1)).
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Perhaps the largest advantage of PLS over PCR is that the possible nonsense of giving a
large weight to an irrelevant explanatory variable is avoided. For example, suppose that the
variable Xg is completely uncorrelated with y. Using the PCR algorithm there is nothing to
prevent this variable from receiving a possibly large weight, while with the PLS approach,

this variable receives approximately zero weight.

3 Forecast Combination and Principal Components

Bates and Granger (1969) — see also Granger (1989) and Deutsch, Granger, and Terévirsta.
(1994) — suggest that when there are several forecasts for the same variable, one sensible
approach is to combine these several forecasts. Several combination methods have already
been by proposed. Chan, Stock and Watson (1999) argue that a suitable way to combine
the different forecasts is to model them as an approximate factor model.

If one has N explanatory variables, then, using univariate regressions it is possible to
produce N forecasts that can be combined using the PCR approach. We will call this
procedure Principal Components Combination (PCC).

Let us consider in detail how to implement the PCC method. Step 1, project y onto
the space spanned by each of the N explanatory variables: z, = x, (2/,2,) " .y, for n =
1,2,...,N. Step 2, create a new matrix of explanatory variables: Z = (z1,...,2x). Step 3,
find the eigenvectors u; of Z'Z associated with positive eigenvalues. Let u; be the eigenvector
associated with the largest eigenvalue, us with the second largest, and so on. Step 4, use as
new regressors the variables Zuy associated with the A highest eigenvalues.

By choosing the principal components one is choosing a linear combination of the explana-
tory variables (Z) that maximizes the variance. In this case the variance of each individual
predictor has a natural interpretation: it is the explained variance of y by the corresponding
original explanatory variable. One is no longer finding the principal components without
taking into account the information contained in y. The weight that each variable receives
is not independent from the relationship between the regressors and the dependent variable.
Variables with higher explanatory power are also the variables with the highest variance, and
hence they will tend to receive a higher weight. On the other extreme, if some variable x,,
has no explanatory power over y, then the estimated y’s will be constant (since all variables
are in deviations from the mean, z, will be a column of zeros), and this variable will receive
zero weight when constructing the principal components.

If we choose A components the estimated value for y is

=7 (ur, s ua) [(Z (u, ooy wa)) Z (ury ooy ua)] " (Z (un, oy ua)) y



The final forecasts will be independent of the scale of the original variables X, because
the matrix Z will not be changed with the scale of the original variables, so practitionersare

free of choosing appropriate scaling of data.

Proposition 4 Let K be the number of eigenvectors (px) of X' X associated with nonzero
eigenvalues and assume that cov (y,x,) #0,n=1,...., N. Then (Zuy, ..., Zuk) and (Xp1, ..., Xpk)

span the same space.

Proof. Note that a, = (x;xn)fl Xy is a scalar different from zero asymptotically as long
as cov (y,x,) # 0. So z, = a,x, and hence X and Z span the same space and the number
of eigenvectors associated with nonzero eigenvalues of X'X and Z'Z are the same (i.e., K).
Since (Xpy, ..., Xpk) span the same space as X, and (Zuy, ..., Zuk) span the same space as
Z, we must have that (Xp, ..., Xpx) and (Zuy, ..., Zug) span the same space. B

This proposition tells us that, when considering the population version of the model,
PLS and PCC are equivalent, as long as all the components associated with strictly positive
eigenvalues are used. In a sample regression this result will have some noise because the
number of positive eigenvalues will be min (N,7T — 1), and obviously it is unfeasible to use
so many components. In small samples, one would expect that when only a few components
are considered then the components estimated by PCC will produce better forecasts (we will
be able to confirm this later) but asymptotically, with N and 7" approaching infinity, the
results should converge.

We are restricting ourselves to produce the forecasts using a linear model. Although we
do not pursue this route here, there is nothing fundamental about that restriction. If we
believe that a nonlinear model is better to capture the relationship between, say, x; and y
then we can use for that variable a nonlinear model. This is a possible extension of the

method we are proposing.

4 Empirical Application

Inflation forecasts are at the center of policy deliberations at inflation-targeting central banks.
They also play an important role in non-inflation-targeting central banks such as the Federal
Reserve and the European Central Bank. In countries with centralized wages barganing,
inflation forecasts also play a crucial role because unions and firms are mainly concerned
in negociating real wages. Rational economic agents base their investment decisions on
expected real interest rates.

In this section we will apply the methods described in sections 2 and 3 to forecast inflation.

The data was taken from the DRI-Mcgraw Hill Basic Economics database spanning a time



horizon from October 1968 to March 2003. This amounts to 413 monthly observations of
140 variables.

All these variables are economic indicators measuring different aspects of the economy
activity, such as real output and income, employment, sales, consumption, housing starts
inventories, stock prices, exchange rates, interest rates, monetary aggregates, wages and,
obviously, inflation.

Most variables were logarithmized (namely all the strictly positive variables that were
not in the form of rates or ratios). Using the ADF and Phillips Perron tests, we test each
series to check if it was stationary or not. In the cases in which the series were not stationary
we took first differences.

We will produce h-month-ahead inflation forecasts using different specifications. We will
estimate the model using T observations and use the estimated model to produce an out of
sample inflation forecast and compare this forecast with the realized inflation rate. This will
be done recursively for the complete sample. Then the Mean Square Prediction Error (MSE)
and the Mean Absolute Prediction Error (MAE) of the out of sample forecasts are obtained
to compare the accuracy of the different methods proposed. Rolling window estimation is
used. For example, if we consider a sample size of 100 observations, we use the first 100
observations to predict the inflation of period 101. Then we will reestimate the model using
observations 2-101 to produce a forecast of the inflation in period 102, and so on

As in Stock and Watson (1999) we will consider two different measures of inflation. One
is the Consumer Price Index (with the mnemonic PUNEW) — a Laspeyres index — and
the other is the Personal Consumer Expenditure deflator (with the mnemonic GMDC) — a
chain weighting.

In the more general form, the model to be estimated is:
W?HL=a+,3(L)Xt+’Y<L)7Tt+6?+h, t=1,2,... (9)

1
The dependent variable is 7l , is given by nf,, = ([Hf_l (1 +7rt+i)} "o 1). This
specification can be thought of as predicting inflation over the next h months.
The regressor(s) x; is (are) some explanatory variable(s) available at time t. 3 (L) is a
polynomial vector in the lag operator L, and «y (L) is a polynomial in the lag operator L.

We will consider several competing methods for the choice of x;:

e the Phillips curve: x; is just the unemployment rate between all workers of 16 years

or older of period t,

e the pure time series AR model: x; is omitted,
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e PCR, PLS and PCC: x; is recursively chosen in each regression according to the meth-

ods described below.

For PCR we compute the principal components, using the procedure described in section
3, and choose the one associated with the largest eigenvalue. Then to determine whether
we should include the component associated with the second highest eigenvalue we use a
modified version of the Bayes Information Criterion (BIC), proposed by Bai and Ng (2002)?.
If the inclusion of the second component is rejected, the process stops; otherwise the same
criterion is used again to evaluate the score associated with the third largest eigenvalue, and
so on. A maximum of 10 components is allowed. With the PCC the procedure is the same
as the PCR method. The only difference is that instead of considering the original variables,
these are pre-transformed (as described in section 3).

For example, if the original variable is a vector X;, we will work with z; = X;(X/X;)™Vy,
where y is the dependent variable, the h-period ahead inflation rate. Finally to estimate the
components using the PLS method, we use the alternative basis described in proposition 2.
The first component to be included is X (X'y). Then one checks if X [(X'X) X'y] should be
included. If the inclusion is rejected, the process stops; otherwise we check if X [(X 'X )2 X’ y]
should also be included, and so on. Again a maximum of 10 components is allowed.

Two aditional matters should be mentioned. First since PLS and PCR are scale sensitive
we followed the suggestion in the literature and, in each regression, we normalized all the
variables to have unit variance. Although not reported, we also considered the case with
no normalization. The performance of these two methods is severely worse without the
normalization. We should also note that since we have 140 explanatory variables and when
constructing the X matrix, we include two more lags of each explanatory variable, the matrix
of explanatory variables has 420 columns.

To choose the order of the polynomials 3 (L) and (L), we use the typical BIC.

4.1 Results

In tables 1 to 5 we can check the performance of the various methods. On the top part
of each table we have the relative (to PCR) mean square forecast errors and on the lower
part the relative mean absolute forecast error. We considered several sample sizes, so that
one can evaluate the performance on small and on larger samples. Naturally, the larger the

sample size is, the lesser the number of feasible estimations is.

2Bai and Ng showed that the standard BIC can only consistently estimate the correct number of factors
if the factors are known. If one has to estimate the factors then the BIC may not consistently estimate the
correct number of factors. The same criterion was used by Marcellino et al. (2003).
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By a simple counting procedure it is apparent that the PCC method gives the most
accurate forecasts: in 76 times, out of 120, the PCC had the smallest out of sample relative
forecast errors. PLS also performed reasonably well, being able to produce the smallest mean
forecast errors 32 times, followed by PCR (8 times) and the AR model (4 times).

Taking the PCR model as the benchmark, we conclude that PCC was able to beat PCR
101 times (out of 120), while PLS produced more accurate forecasts than PCR (according
to the two different criteria) 70 times. Comparing the PCC method with PLS we can see
the PCC produces more accurate forecasts 84 times (out of 120).

To compare the performance of these methods in a more formal way we consider two tests.
One is a sign test (see Diebold and Mariano (1995) for details), the other is the Diebold and
Mariano Statistic (again see Diebold and Mariano (1995) for details) to test if the MSE and
MAE of two different methods are statistically significantly different (the null being that the
forecast performances are similar) — negative values of the test statistics mean that PCC
performed better according to the criterion of the test. In tables 6 to 10 we have the results
of the tests comparing PCR with PCC (bellow the value of each statistic is the p—value).

Of all the tests applied to each series of forecasts, only once it was concluded that the
PCR had a significantly better performance (considering 10% significance level) than PCC —
namely when predicting the 6 months inflation, using the GMDC price index, and the MAE
criterion to evaluate the performance.

On the other hand we can see that PCC performs significantly better than PCR several
times and according to the several tests. For example, when predicting the two years infla-
tion, the PCC performance is always significantly better than PCR, according to the three
different statistics (except when we have the sample size of 300). For shorter horizons, like
one month or three month inflation forecasts although PCC systematically performs better,
only sporadically the better performance is statistically significant. Looking at intermediate
horizon forecasts (6 and 12 months), we conclude that about half of the times the difference
between the performance of the two methods is statistically significant.

In tables 11 to 15, we can see the results of the same tests comparing PCC with PLS —
as before, negative values for the test statistics mean that PCC performed better. PCC was
significantly more accurate (considering a significance level of 10%) 81 times while PLS was
significantly more precise 19 times. Given these results, it is fair to consider PCC as being

the method with the overall best performance.
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5 Conclusions

Stock and Watson (1999) considered several forecasting models to predict inflation in the
US. Of the several models they considered, PCR was the one with the best performance. In
this paper we used this model as a benchmark.

To overcome some of the criticisms to the PCR method, two other methods, which can

be applied in similar situations, were proposed:

e the Partial Least Squares, which is very well-known in the Chemometrics literature,

and its relation with PCR has already been widely studied, and

e the Principal Components Combination, which tries to overcome the shortcomings
of the PCR method by combining this method with the literature on combinations
of forecasts. This method is scale invariant with respect to the original explanatory
variables, and takes into consideration the explanatory power of each of the explanatory

variables when choosing the weights to give to each variable.

The main results of Stock andWatson was reproduced in this paper: PCR leads to sig-
nificant improvements over the typical AR model, or over the traditional Phillips curve.
However the new method PCC outperforms PCR in many cases.

PLS seems to produce better forecasts than PCR for longer horizons (one or two years
inflation forecasts), but these results do not carry over to smaller horizons.

PCC outperforms PCR and PLS.
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Table 1: one month inflation

GMDC

Felative Mean Sguare Error
sample size a0 100 140 200 240 200
PCR 1 1 1 1 1 1
Phillips 1.007 1054 1246 1242 1.308] 1.396
PLS 1129 11531 1155 1.052] 1.025] 1.026
AR 0847 1.018] 1195 1.244) 1.337] 1.396
PCRC 1003 0975 08946] 0886 0913] 0909

Relative Mean Absolute Error
PCR 1 1 1 1 1 1
Phillips 1021 1078 1157 1123 1137 1137
PLS 1075 11131 1084 1.031] 1.035] 1042
AR 0989 1.048) 1128 11271 1.148] 1.130
P_RC 0987 0985 0965 0841 0924 0918

FUMEWY

Felative Mean Sguare Error
sample size a0 100 140 200 240 200
PCR 1 1 1 1 1 1
Phillips 1071 1034 11540 1181 1.252] 1.191
PLS 08946] 1.013) 1137 13700 13421 1.179
AR 0663 0996) 1081 1117 1.229] 1134
PCRC 0848] 10585 0931 0929] 0936 0852

Relative Mean Absolute Error
PCR 1 1 1 1 1 1
Phillips 1.029] 10631 1137 11000 1.129] 1.106
PLS 0996 1.008] 1089 11731 1171 1127
AR D864 1.043) 1092 10621 1.109] 1.059
PCRC 0989 1.018] 0960 0D963( 0956] 0965
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Table 2:

three months inflation

GMDC

Felative Mean Sguare Error

sample size a0 100 140 200 240 200
FPCE 1 1 1 1 1 1
Phillips 1311 12270 1572 1544 1827 1614
PLS D896 0936) 1011 08916 1.207] 0800
AR 1165 1187 1433] 1512] 1.896] 1569
PCRC 0993 0887 0900 0899 0894 0830

Felative Mean Absolute Error
PCR 1 1 1 1 1 1
Phillips 1061 1224 12364 12431 1.393] 1.298
PLS D911 1043 1046 D936 1.113] 0952
AR 1078 1204 1299 1232 1402] 1249
PCRC 0963 0977 0975 0957 0926] 0926

FUMEWY

Felative Mean Sguare Error
sample size a0 100 140 200 240 200
FPCE 1 1 1 1 1 1
Phillips 1299 12560 1521 1314 1.718] 1770
PLS 0849 0910) 1.017] 1.076] 1484 1445
AR 1097 1211 1.335] 1137 1.633] 1560
PCRC 0786] 0951 0992 0929 0931 0797

Felative Mean Absolute Error
PCR 1 1 1 1 1 1
Phillips 1103 12030 123040 1161 1.323] 1.390
PLS 0935 1.012] 1054 10431 1.193] 1.180
AR 1058 1144 1186 1.087] 1.280] 1262
PCRC 0889 09587 1000 08934 0844 0892
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Table 3: six months inflation

GMDC

Felative Mean Sguare Error

sample size a0 100 140 200 240 200
PCR 1 1 1 1 1 1
Phillips 1376 1475 1729 1889 2.160] 1892
PLS 0808 1114 0896 0931 1284 0873
AR 1350 1483 1537 1.782] 2.224] 1.760
PCRC 0775 0882 0851 08912 0914] 1052

Felative Mean Absolute Error
PCR 1 1 1 1 1 1
Phillips 1123 13220 1.366] 1367 1608] 1436
PLS 0889 1086 D916 08931 1.171] 08942
AR 1193 12304 1291 1.318] 1607 1358
P_RC DE27] 0927 0927 0962{ 0818 1.006

FUMEWY

Felative Mean Sguare Error
sample size a0 100 140 200 240 200
PCR 1 1 1 1 1 1
Phillips 1531 1541 2158 1828 2051 2180
PLS 0814 0910 1071 1.009] 1235 1.121
AR 1425 1467 1.778] 1487 1915 1827
PCRC D674 0816] 1120 1001f 0873 1.003

Felative Mean Absolute Error
PCR 1 1 1 1 1 1
Phillips 1184 1327 15300 1426] 1518] 1592
PLS 0868 0936] 1025 10400 1.144] 1.088
AR 1156 11920 1.315] 1263 1442] 1398
PCRC 0E&13] 0906] 10383 10850 0872 1.080
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Table 4: twelve months inflation

GMDC

Felative Mean Sguare Error

sample size a0 100 140 200 240 200
PCR 1 1 1 1 1 1
Phillips 20200 1583 1942 27234 2369 2365
PLS 0814 0895 0746 0763 0845 0704
AR 1.712] 1614 1660 1.878] 2.3%3] 2.009
PCRC D711 0569 0795 0772 0685 1.063

Felative Mean Absolute Error
PCR 1 1 1 1 1 1
Phillips 1293 13750 1465 1512 1610] 1552
PLS 0921 1000 08231 0863 08595 0772
AR 1412 1366 1340 1363 1583] 1385
P_RC 0E21] 0771 0914 0902( 0746 1.005

FUMEWY

Felative Mean Sguare Error
sample size a0 100 140 200 240 200
PCR 1 1 1 1 1 1
Phillips 1936 1792 2373 2189 2404 2234
PLS 0788 0811 0962 D&Y 0935 0639
AR 1982 1689 1829 15800 2191 1.719
PCRC 0583 0652 0936 0530( 0803 0805

Felative Mean Absolute Error
PCR 1 1 1 1 1 1
Phillips 1285 1.349] 1588 1556 1707 1654
PLS 0873 0951 0985 08951 1.020] 0793
AR 1413 12800 1327 1.291] 1599 1398
PCRC 0753 0838 1032 1016( 0806 0900
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Table 5: two years inflation

GMDC

Felative Mean Sguare Error

sample size a0 100 140 200 240 200
PCR 1 1 1 1 1 1
Phillips 1619 1828 1979 2670 2802 30/6
PLS 0714] 0693 07471 0429 0504 0602
AR 20800 1872 1719 1976 2722 2500
PCZRC 0553 0585 0711 06650 0498 1024

Felative Mean Absolute Error
PCR 1 1 1 1 1 1
Phillips 1331 1353 1488 1.712] 1687 1793
PLS 0888 0851 0770 0624 0681 0758
AR 1576 1376 1353 1458 1643] 1597
PCRC 0758 0773 07938 0822{ 0668 1.030

FUMEWY

Felative Mean Sguare Error
sample size a0 100 140 200 240 200
PCR 1 1 1 1 1 1
Phillips 1619 1967 1984 3079 3.146] 4159
PLS 0703 0711 0802 0707 0683 0823
AR 2345 1928] 1557 1993 2893 3182
PCZRC 0519 0580 0831 0766( 0680 1018

Felative Mean Absolute Error
PCR 1 1 1 1 1 1
Phillips 1343 1377 1479 1828 1.898] 2133
PLS 0861 0876 0801 0799) 0816 0678
AR 1603 1386 1241 1429 1.800] 1840
PCRC 0709 0742 0837 0834 0821 09594
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Table 6: tests for the one month inflation forecasts — PCC vs PCR

MDC
sample size 0] 100 1500 2000 250 300
Sign statistic 0.641]-1.270(-0.506]-1.556)-1.796]-0600
p-value 0261 0.102] 0306] 0060 0036 0274
DM statistic (MSE) | 0.049]-0342|-0640]-1268]-0864|-0727
p-value 0481 0366] 0261 0102 0.194] 0.234
DM statistic (MAE) | -0 420(-0.392|-1.065]-1616]-1.794|-1.391
p-value 0.337| 0.347] 0144 0053 0.036] 0.082

PUMNEWY
Sign statistic -0.855-0115]-0.759]-1.697|-1.306(-1.200
p-value 0.196] 0454 0224] 0045 0.096] 0.115
DM statistic (MSE) | -0674] 1.069|-1.086]|-0.904]-0816[-1.524
p-value 02600 0.142] 0138 0183 0.207] 0.084
DM statistic (MAE) | -0.284] 0472(-1.142]-0953]-1.053[-0.739
p-value 0383 0.319] 0127 01700 0.146] 0.230

[able 7: tests for the three months inflation forecasts — PCC vs PCR

DI
sample size a0 100 150 200] 250 300
Sign statistic -1 608 0.000]-0127([-1137]-1644|-0202
p-value 0054 05000 0449 0128[ 0.050] 0.420
DM statistic (MSE) |-0.077|-0.904[-1.098]-1.372]-1.163]-1.061
p-value 0463 0183 0.136] 0085 0.122] 0.144
DM statistic (MAE) | -0.843|-0448|-0.510(-1.048[-1.387|-0.588
p-value 0173] 0327] 03058] 0147] 0083 0187

FLNEYY
Sign statistic -1.823] 0.116] 0000[-0711]-1.151]-1.818
pvalue 0034] 0454] 0500] 0.239] 0125] 0035
DM statistic (MSE) | -2 006 |-05938|-0.081[-0.751[-0.609]-1.404
pvalue 0022 0275 04RE| 0226 0271] 0.080
DM statistic (MAE) | -2 258|-0.306] 0.009]-0.290]-0.8584]-1.3581
p-value 0012 036800 0497 0.386[ 0.188] 0.084
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Table 8: tests for the six months inflation forecasts — PCC vs PC

MDC
sample size 0] 100 1500 2000 250 300
Sign statistic -4.899)-2.154|-0447 | -0.645]|-1.080] 0103
p-value 0000 0016] 0327 02600 0.140[ 0.459
DM statistic (MSE) | -2 027 [-0631[-1.526]-0941]-0714| 0.394
p-value 0021 0.264] 0063 0173 0.238] 0.347
DM statistic (MAE) | -3 116]-1.049]-1.227]-0614]-0.813] 0.060
p-value 0.001] 0.147] 01100 02700 0.181] 0.476

PUMNEWY
Sign statistic -3499)-2154| 0.831] 0.931]-0415] 0718
p-value 0.000] 0.016] 0203] 0178 0.339] 0.236
DM statistic (MSE) | -2 .539]-1.544| 1185 0.010(-0.231] 0.021
p-value 0006 0081] 0118 0495 0.409] 0.492
DM statistic (MAE) | -3 048] -1412| 1.297] 1.133]-0.398| 0.851
p-value 0001 0079] 0097 0129 0.345] 0.197

Table 9: tests for the twelve months inflation forecasts — PCC vs PCR
MO
sample size a0 100 150 200] 250 300
Sign statistic -2.879(-4.294)-1100(-2 255])-3 986 0742
p-value 0002 00000 0136 0012 0000 0229
D statistic (MSE) -2 625(-1491] -1 622]-1481]-2.371] 0321
p-value 0004 0068 0052 006% 0009 0374
Db statistic (MSE) | -2.694)-2.100(-1.534 -1 403 -2 548 0.040
p-value 0000 00a| 0083 0030 0005 0484
FUMNEWY
=ign statistic S 1821-3.0000 1100 0.800)-1272]-1.378
p-value 0.000f 0.00 0136 0212 0102 0.084
D statistic (MSE) | -2 975 -1.520(-0520(-0 643 -0 5896|-0.914
p-value 0.000f 00s4) 0.3M 02601 0276 01380
D statistic (MSE) | -4 669|-1.766] 0476] 0141]-0763]-1.053
p-value 0000 0039 o037 0444 0223 0146
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Table 10: tests for the two years inflation forecasts — PCC vs PCR

izMDC
sample size S0 100 1500 2000 250 300
Sign statistic -5.807|-4.867|-4.580(-2.330]|-4 348 0798
p-value 0000 oooof ooool 0010 0000 0213
DM statistic (MSE) | -5.095]-2.217|-2.198|-2477|-5.801] 0.272
p-value 00000 0013] 0014 0007 0.000] 0393
DM statistic (MSE) | -6 122]-3.071[-2 286|-3 445]-4.309| 0675
p-value 0000 0001] 0001 0000 0.0000 0250

PUMNEWY
Sign statistic -B5470)-5468(-3.252(-2931]-1863[-0.114
p-value 0000 0000) 00010 0002 0.031] 0.455
DM statistic (MSE) | -2 817 [-2.240(-2 607 -1 683|-2.005] 0598
p-value 0.002] 0.013] 0005 0.045)] 0.022] 0.275
DM statistic (MSE) | -4 482 -10.55|-2.507|-1457|-1.506(-0.093
p-value 0000 0000] 0006 0.073] 0.0686] 0461

Table 11: tests for th

e one month inflation forecasts — PCC vs PLS

MDC
sample size 0] 100 1500 2000 250 300
Sign statistic -3.100)-3.233-2403[-1414]-1.633]-1.000
p-value 0001 0001 0008 0079 0051 0159
DM statistic (MSE) | -2 161[-2 406 -2 550 -1 807(-1.023[-1.110
p-value 0015 0005 0005 0035 0.153] 0,134
DM statistic (MAE) | -2 862[-3 444 |-2.020]-1.798]-1.906(-1.529
p-value 0.002] 0000] 0001 0036 0.028 0.034

PUMNEWY
Sign statistic 1604 -1.386(-2403]-4.101]-3 266]-1.400
p-value 0.054| 0083] 0008 0.000] 0.001] 0.081
DM statistic (MSE) | 0.504] 0.926|-2542]|-3840(-3 496(-2.311
p-value 0307 0177] 0006 00000 0.0000 0010
DM statistic (MAE) | -0.010] 0.065|-2758]|-3652(-3513[-2.380
p-value 0496 0474] 0003 0.000] 0.000] 0.009
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Table 12: tests for th

three months inflation forecasts — PCC vs P

MDC
sample size 0] 100 1500 2000 250 300
Sign statistic 0322|1738 0.000] 0.711)-2466] 0.000
p-value 0374 0041] 04800 0239 0.007] 0500
DM statistic (MSE) | 1.055[-0621[-1.080]-0163]-1760| 0.229
p-value 0146| 0267 01400 0435 0.039] 0.409
DM statistic (MAE) | 1.216]-1.524|-1.232] 0.352]-2205[-0275
p-value 0.112] 0.0s4] 0109 0362 0.014] 0.392

PUMNEWY
Sign statistic S1501]-3.244(-0.381]-0.284] -3 124]-2 424
p-value 0057 0001] 0352 0385 0.001] 0.008
DM statistic (MSE) | -0.841] 0627 |-0.331|-1476]-3.345( -3 067
p-value 02000 0285 03700 0.070] 0.000] 0.001
DM statistic (MAE) | -1.130[-0646|-1.014|-0928|-2 984 |-2 798
p-value 0129 0.289] 0155 0177 0.001] 0.003

Table 13: tests for th

e six months inflation forecasts — PCC vs PLS

DI
sample size a0 100 150 200] 250 300
Sign statistic -1 669(-3.086] 0958 0501]-3239] 1949
p-value 0045 00010 0169 0.308[ 0.001] 0.026
DM statistic (MSE) | -0562|-1490(-0307[-0127[-2.047| 0670
p-value 02587 0063 0379 04481 0.0200 0.251
D statistic (MAE) | -1.565(-2408] 0.155] 0404]-2388| 0361
p-value 0053| 0008] 0438 0.343] 0008 0359

FLNEYY
Sign statistic 07001572 1086 1.217]-1.246] 1129
pvalue 0242| 0088] 0139] 0112] 0108 0130
DM statistic (MSE) |-1.573|-0.848] 0.285]-0.049]-1.731]-0.451
pvalue 0058| 0172] 0388 0480] 0.042] 0326
DM statistic (MAE) |-0953|-0540] 0.723] 0454[-1.860]-0.065
p-value 0170 02050 0235 0325 0.031] 0.474

25



Table 14: tests for the twelve months inflation forecasts — PCC vs PLS

SO
sample size o0 100 150 200] 250 300
Sign statistic -1 684|-5588] 2652 0.800)-2120] 3822
p-value 0045 00000 D0o04) 0212 0.017] 0.000
DM statistic (MSE) | -1.570|-2536| 0577 0.053[-1.784] 1462
pvalue 0058| O0006] 0282] 0479] 0037 0072
DM statistic (MAE) | -1.765|-3 332 1.312] 0.380[-2.142] 1430
p-value 0033] 0000f 0095] 0352] 0016] 0076

PLUNEWY
Sign statistic -3.313(-2.529] 1488 0.364]|-1612] 1.278
pvalue 0000] OO006] O0RG| 0358 0.054] 0.084
DM statistic (MSE) | -2 840|-1.450(-0.305] 0.007[-0.184| 0.745
p-value 0002 0074 0380 0497 0427 0228
DM statistic (MAE) | -2 219|-2155] 0.774] 1445[-0.844| 0.598
p-value 0013 0016] 02200 0074] 0183] 0275

Table 15: tests for the two years inflation forecasts — PCC vs PLS

MDC
sample size 0] 100 1500 2000 250 300
Sign statistic 44791742 1.792] 3533 -0.266] 4.900
p-value 0000 0041] 0037 00000 0395 0.000
DM statistic (MSE) | -1.674[-1127[-0.361] 2 387|-0046] 2220
p-value 0047 0.130] 0359 0.008] 0481 0.013
DM statistic (MAE) | -1.728]-1.082| 0.383] 2387|-0152] 2247
p-value 0.042] 0.140] 0351 0.009] 0433 0.012

PUMNEWY
Sign statistic -4 258]-3.305] 1.261] 2.029] 0.089] 2165
p-value 0.000] 0.000] 0.104] 0.021] 0485 0.015
DM statistic (MSE) | -1.902]-1.190| 0361 0.858|-0.034| 0.814
p-value 00290 0.117] 0388 0195 0.486] 0.208
DM statistic (MAE) | -2.208] -204| 0489 1520] 0.070] 0.780
p-value 0011 0021 0312 0.084] 0472 0215

26



