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Abstract

In this paper, we propose two parametric alternatives to the standard GARCH model.
They allow the conditional variance to have a smooth time-varying structure of either ad-
ditive or multiplicative type. The suggested parameterizations describe both nonlinearity
and structural change in the conditional and unconditional variances where the transition
between regimes over time is smooth. A modelling strategy for these new time-varying
parameter GARCH models is developed. It relies on a sequence of Lagrange multiplier
tests, and the adequacy of the estimated models is investigated by Lagrange multiplier
type misspeci�cation tests. Finite-sample properties of these procedures and tests are
examined by simulation. An empirical application to stock returns and another one to
exchange rate returns illustrate the functioning and properties of our modelling strategy
in practice. The results show that the long memory type behaviour of the sample autocor-
relation functions of the absolute returns may be induced by changes in the unconditional
variance.

JEL classi�cation: C12; C22; C51; C52

Key words: Conditional heteroskedasticity; Structural change; Lagrange multiplier test;
Misspeci�cation test; Nonlinear time series; Time-varying parameter model.
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1 Introduction

The modelling of time-varying volatility of �nancial returns has been a �ourishing �eld of
research for almost a quarter of a century following the introduction of the Autoregres-
sive Conditional Heteroskedasticity (ARCH) model by Engle (1982) and the Generalized
ARCH (GARCH) model developed by Bollerslev (1986). The increasing popularity of
the class of GARCH models has been mainly due to their ability to describe the dynamic
structure of volatility clustering of stock return series, speci�cally over short periods of
time. However, one may expect that economic or political events or changes in institutions
cause the structure of volatility to change over time. This means that the assumption
of stationarity may be inappropriate under the evidence of structural changes in return
�nancial series. In a recent paper, Mikosch and St¼aric¼a (2004) argue that stylized facts in
�nancial returns such as the long-range dependence and the �integrated GARCH e¤ect�
can be well explained by unaccounted structural breaks in the unconditional variance
(see also Lamoureux and Lastrapes (1990)). Diebold (1986) was the �rst to suggest that
occasional level shifts in the intercept of the GARCH model can bias the estimation to-
wards an integrated GARCH model. Another line of research has focussed on explaining
nonstationary behaviour of volatility by long-memory models, such as the Fractionally
Integrated GARCH (FIGARCH) model by Baillie, Bollerslev, and Mikkelsen (1996).
The FIGARCH model is not the only way of handling the �integrated GARCH e¤ect�

in return series. Baillie and Morana (2007) generalized the FIGARCH model by allow-
ing a deterministically changing intercept. Hamilton and Susmel (1994) and Cai (1994)
suggested a Markov-switching GARCH model for the purpose, and their model has later
been generalized by others. One may also assume that the GARCH process contains sud-
den deterministic switches and try and detect them; see Berkes, Gombay, Horváth, and
Kokoszka (2004) who propose a method of sequential switch or change-point detection.
Yet another way of dealing with high persistence would be to explicitly assume that the
volatility process is �smoothly�nonstationary and model it accordingly. Dahlhaus and
Subba Rao (2006) introduced a time-varying ARCH process for modelling nonstationary
volatility. Their tvARCH model is asymptotically locally stationary at every point of
observation but it is globally nonstationary because of time-varying parameters. Engle
and Gonzalo Rangel (2005) assumed that the variance of the process of interest can be
decomposed into two components, a stationary and a nonstationary one. The nonsta-
tionary component is described by using splines, and the stationary component follows a
GARCH process. The parameters of the latter are estimated conditionally on the spline
component.
In this paper, we propose two nonstationary GARCH models for situations in which

volatility appears to be nonstationary. First, we propose an additive time-varying pa-
rameter model, in which a directly time-dependent component is added to the GARCH
speci�cation. In the second alternative, the variance is multiplicatively decomposed into
the stationary and nonstationary component as in Engle and Gonzalo Rangel (2005).
These two alternatives are quite �exible representations of volatility and can describe
many types of nonstationary behaviour. We emphasize the role of model building in this
approach. The standard GARCH model is �rst tested against these time-varying alter-
natives. If the null hypothesis is rejected, the structure of the time-varying component of
the model is determined using the data. This is done by testing a sequential of hypothesis
testing, and the necessary tests are presented in the paper. After parameter estima-
tion, the model is evaluated by misspeci�cation tests following the ideas in Eitrheim and
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Teräsvirta (1996) and Lundbergh and Teräsvirta (2002).
The outline of this paper is as follows. In Section 2 we present the new Time-Varying

(TV-) GARCH model and some of its properties are discussed. In Section 3 we derive LM
parameter constancy tests against an additive and a multiplicative alternative. In Section
4 we present modelling strategies for both speci�cations. Details regarding the estimation
are discussed in Section 5 and some diagnostic tests for the TV-GARCH model are given
in Section 6. Section 7 contains results of the empirical performance using Monte Carlo
experiments. In Section 8 we illustrate our modelling cycle using both stock returns and
exchange rate data. Finally, Section 9 contains concluding remarks.

2 The model

Let the model for an asset or index return yt be

yt = "t

where f"tg is an innovation sequence with conditional mean E("tjFt�1) = 0 and a po-
tentially time-varying conditional variance E("2t jFt�1) = �2t ; and Ft�1 is the sigma-�eld
generated by the available information until t � 1: For simplicity, we assume that the
conditional mean of yt given Ft�1 equals zero because the focus will be on the conditional
variance �2t : More precisely, de�ne

"t = �t�t (1)

where f�tg is a sequence of independent standard normal variables. Furthermore, assume
that �2t is a time-varying representation measurable with respect to Ft�1 which has either
an additive structure

�2t = ht + gt (2)

or a multiplicative one
�2t = htgt: (3)

The function ht is a component describing conditional heteroskedasticity in the observed
process yt, whereas gt introduces nonstationarity. Thus, suppose that ht follows the
standard GARCH(p; q) model of Bollerslev (1986)

ht = �0 +

qX
i=1

�i"
2
t�i +

pX
j=1

�jht�j: (4)

Then the GARCH(p; q) model is nested in (2) when gt � 0 and in (3) when gt � 1: More
generally, when (3) holds, "2t�i replaced by "

2
t�i=gt�i; i = 1; :::; q; in (4). Both parameter-

izations (2) and (3) de�ne a time-varying parameter GARCH model. For characterizing
smooth changes in the conditional variance we assume that the parameters in (4) vary
smoothly over time. This is done by de�ning the function gt in (2) as follows

gt = (�
�
0 +

qX
i=1

��i "
2
t�i +

pX
j=1

��jht�j)G(t
�; 
; c); (5)

whereG(t�; 
; c) is the so-called transition function which is a continuous and non-negative
function bounded between zero and one. Furthermore, t� = t=T; where T is the number
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of observations. A suitable choice for G(t�; 
; c) is the general logistic smooth transition
function de�ned as follows:

G(t�; 
; c) =

 
1 + exp

(
�


KY
k=1

(t� � ck)

)!�1
; 
 > 0; c1 � c2 � ::: � cK : (6)

This transition function is such that the parameters of the GARCH model (1)-(2) �uctu-
ate smoothly over time between (�i; �j) and (�i + �

�
i ; �j + �

�
j), i = 0; 1; :::; q; j = 1; :::; p:

The slope parameter 
 controls the degree of smoothness of the transition function. When

 �! 1 in (2), (4) and (5), the switch from one set of parameters to another is abrupt,
that is, the process contains structural breaks at c1; c2; :::; cK : The order K 2 Z+ deter-
mines the shape of the transition function. Typical choices for the transition function in
practice are K = 1 and K = 2. These are illustrated in Figure 1 for a set of values for 
;
c1; and c2: One can observe that large values of 
 increase the velocity of transition from
0 to 1 as a function of t�:When 
 �!1; a smooth parameter change approaches a struc-
tural break because then the process switches instantaneously over time from one regime
to another. For K = 1; the TV-GARCH model is suitable to describe return processes
whose correlation dynamics di¤er before and after the smooth structural change. For
K = 2; the parameters �rst change and eventually move back to their original values.
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Figure 1. Plots of the logistic transition function (6) for: (a) K = 1 with location
parameter c1 = 0:5; and (b) K = 2 with location parameters c1 = 0:2 and c2 = 0:7 for

 = 5; 10; 50; and 100 where the lowest value of 
 corresponds to the smoothest function.

More generally, one can de�ne an extended version of the additive TV-GARCH model
allowing for more than one transition function. A multiple TV-GARCH model can be
obtained by adding r transition functions as follows

gt =

rX
l=1

(�0l +

qX
i=1

�il"
2
t�i +

pX
j=1

�jlht�j)Gl(t
�; 
l; cl) (7)

where Gl(t�; 
l; cl); l = 1; :::; r; are logistic functions as in (6) with smoothness parame-
ter 
l and a threshold parameter vector cl: The parameters in (4) and (7) satisfy the
restrictions �i +

Pr
l=1 �il > 0; i = 0; :::; q; i = 0; :::; q; 8j = 1; :::; r and �i +

Pj
l=1 �il � 0;

i = 1; :::; p; 8j = 1; :::; r: These conditions are su¢ cient to guarantee strictly positive
conditional variances.
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The model (2), (4) and (7) is an additive TV-GARCH model whose intercept, ARCH
and GARCH parameters are time-varying. This implies that the model is capable of
accommodating systematic changes both in the �baseline volatility� (or unconditional
variance) and in the amplitude of volatility clusters. Such changes cannot be explained
by a constant parameter GARCH model.
Function (7) with r > 1 is extremely �exible and probably makes the model di¢ cult

to estimate in practice. A more applicable but still �exible model is obtained by only
letting the �baseline volatility�or the intercept to change changing smoothly over time.
This leads to the following de�nition for gt:

gt =

rX
l=1

�0lGl(t
�; 
l; cl): (8)

It may be mentioned that Baillie and Morana (2007) recently proposed a GARCH model
which also has a deterministically time-varying intercept. It is modelled using the �exible
functional form of Gallant (1984) based on the Fourier decomposition. Their model di¤ers
from our time-varying intercept model in the sense that it is in other respects a FIGARCH
model, and the authors call it the Adaptive FIGARCH model.
In the GARCH(p; q) model, the unconditional variance of the returns is constant over

time, that is, E("2t ) = �0=(1�
Pq

i=1 �i �
Pp

j=1 �j) if and only if
Pq

i=1 �i +
Pp

j=1 �j < 1:
However, this assumption is not consistent with the behaviour of the volatilities of the
stock market returns if the dynamic behaviour of volatility changes in the long run. The
additive TV-GARCHmodel with a time-varying intercept is capable of generating changes
in the dynamics of the unconditional variance over time. The model (2), (4) and (8) can
be seen as a GARCH(p; q) model with a stochastic time-varying intercept �uctuating
smoothly over time between �0 and �0 +

Pr
l=1 �0lGl(t

�; 
l; cl): Therefore, it can generate
smooth changes over time in the �baseline volatility�. Hence, such parameterization can
explain the systematic movements of the conditional variance as in the GARCH model
but relaxing the assumption of constancy of the unconditional volatility.
Consider again the model (2), (4) and (7) and assume that �0l = �0�l; �il = �i�l;

i = 1; :::; q; �jl = �j�l; j = 1; :::; p: Furthermore, assume �l > 0; l = 1; :::; r; if the
transition function Gl(t

�; 
l; cl) is increasing over time. For the case Gl(t
�; 
l; cl) is a

decreasing function assume
Pr

l=1 �l < 1 for l = 1; :::; r: Imposing these restrictions on (7)
and rewriting (2) yields

�2t = ht(1 +

rX
l=1

�lGl(t
�; 
l; cl)): (9)

Setting gt = 1 +
Pr

l=1 �lGl(t
�; 
l; cl) in (9) gives the multiplicative representation (3). It

is thus seen to be a special case of the additive TV-GARCH model (2), (4) and (7). The
multiplicative model has a straightforward interpretation. Writing it in terms of (1) as

�t = "t=g
1=2
t = �tht

1=2 (10)

it is seen that �t has a constant unconditional variance Eht and, moreover, that �t has
a standard stationary GARCH(p; q) representation ht: Turning (10) around, one obtains
that  t = "t=h

1=2
t ; t = 1; :::; T; do not form a sequence of iid observations but that the

unconditional variance of  t changes smoothly as a function of time.
We consider properties of both time-varying GARCH speci�cations by generating 1000

replications with Gaussian errors each with 5000 observations. Figure 2 illustrates the
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relation of the average excess kurtosis of the two models given the persistence and the
time-varying constants �01 and �1: The degree of persistence, measured by the sum �1+�1;
varies between 0.90 and 0.99. The range of parameters �01 and �1 varies between 0 and
0.1 while �0 = 0:01. Interestingly, just by assuming normality the proposed models
are capable of generating higher kurtosis than the standard GARCH model. Larger
values of the time-varying constants generate larger values of the excess kurtosis for both
time-varying parameterizations. A high degree of persistence is also able to reproduce
heavy-tailed marginal distributions that are often observed in �nancial return series.
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Figure 2. Plots of the excess kurtosis, persistence and the constants �01 and �1 for: (a)
an additive TV-GARCH model with a time-varying constant; and (b) a multiplicative
TV-GARCH model.

The level of persistence generated by the TV-GARCHmodels is another property of in-
terest. Figure 3 depicts the �rst 100 autocorrelations of absolute returns of two simulated
TV-GARCH processes. The autocorrelations for the additive and multiplicative form are
plotted in Figure 3(a) and Figure 3(b), respectively. The sample length in both cases is
5000 observations. The arti�cial series are generated with �0 = 0:01; �1 = 0:05; �1 = 0:90;
�01 = 0:03; �1 = 0:04; 
1 = 10 and c1 = 0:50: The dotted horizontal lines represent the
95% con�dence bounds corresponding to the ACF of an iid Gaussian process. A visual
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Figure 3. Sample autocorrelation functions of absolute returns with the 95% con�dence
bounds for: (a) an additive TV-GARCH model with a time-varying constant; and (b) a
multiplicative TV-GARCH model.
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inspection of Figure 3 shows that both time-varying speci�cations can generate long-range
dependence behaviour.
The dependence structure of each model has also been analysed by the frequencies of

the empirical distribution of the GPH estimates of the long-memory parameter d for each
model; see Geweke and Porter-Hudak (1983). The results using absolute values of the
returns are displayed in Figure 4. The standard GARCH model is known to have a short
memory in the sense that the theoretical autocorrelation function decays to zero at an
exponential rate. The exponential decay turns out to be too fast if one wants to adequately
describe the high persistence observed in �nancial data. This may be seen from Figure
4(a). If the data are generated by the standard GARCH model, the estimates of the long
memory parameter are rather close to zero. However, when a smooth structural change
occurs in the intercept of the GARCH model, the degree of the long memory dependence
of the data increases as the empirical distribution for the GPH estimates shifts to the
right, see Figure 4(b). As Figure 4(c) shows, this e¤ect is even more evident for the
TV-GARCH with a multiplicative time-varying structure as more than one half of the
probability mass of the empirical distribution of the long-memory parameter is located in
the nonstationary area.
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Figure 4. Histograms of the GPH long memory parameter estimates for: (a) a GARCH
model; (b) an additive TV-GARCH model with a time-varying constant; and (c) a multi-
plicative TV-GARCHmodel. The arti�cial series are generated with �0 = 0:01; �1 = 0:05;
�1 = 0:90; �01 = 0:03; �1 = 0:04; 
1 = 10 and c1 = 0:50 for a sample of 5000 observations
based on 1000 replications.
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3 Testing parameter constancy

3.1 Testing against an additive alternative

Against the background discussed above, parameter constancy testing is an important tool
for checking the adequacy of a GARCH model. If one rejects parameter constancy against
a GARCH model with time-varying parameters one may conclude that the structure of
the dynamics of volatility is changing over time. Of course, other interpretations are
possible, because it does not follow from a rejection of a null hypothesis that the alternative
hypothesis is true. In this section, we propose two parameter constancy tests that allow
the parameters to change smoothly over time under the alternative. The �rst one tests
parameter constancy of the GARCH model against an additive TV-GARCH speci�cation.
This idea has previously been considered by Lundbergh and Teräsvirta (2002). The second
one is a test of constant unconditional variance against the alternative that the variance
changes smoothly over time.
We shall �rst look at the additive alternative where the nonstationary component gt

is de�ned in (5). In order to derive the test statistic rewrite the model as

"t = �tht
1=2; "tjFt�1 � N(0; ht)

ht = �0 +

qX
i=1

�i"
2
t�i +

pX
j=1

�jht�j + (�01 +

qX
i=1

�i1"
2
t�i +

pX
j=1

�j1ht�j)G(t
�; 
; c) (11)

where, for simplicity, r = 1 and Ft�1 is the information set containing all information
until t� 1. The null hypothesis of parameter constancy corresponds to testing H0 : 
 = 0
against H1 : 
 > 0 in (11). Under the null hypothesis, gt � 1=2: One can see that model
(11) is only identi�ed under the alternative. In particular, when 
 = 0; the parameters �i1;
i = 0; :::; q; and �j1; j = 1; :::; p; as well as c are not identi�ed. This makes the standard
asymptotic inference invalid as the test statistics have a nonstandard asymptotic null
distribution. This identi�cation problem was �rst considered in Davies (1977) and, more
recently, in Hansen (1996).
In this paper, we circumvent the identi�cation problem following Luukkonen, Saikko-

nen, and Teräsvirta (1988). Thus we replace the transition function by its �rst-order
Taylor approximation around 
 = 0. Without losing generality and for the purpose of
deriving the test, we replace G(t�; 
; c) by eG(t�; 
; c) = G(t�; 
; c) � 1=2 for notational
convenience. From Taylor�s theorem one obtains

eG(t�; 
; c) = eG(t�; 0; c) + @ eG(t�; 0; c)
@



 +R(t�; 
; c)

=
1

4



KY
k=1

(t� � ck) +R(t�; 
; c)

=

KX
k=0


~ck(t
�)k +R(t�; 
; c) (12)

where R(t�; 
; c) is the remainder from the Taylor expansion. Replacing G(t�; 
; c) in (11)
by (12) and rearranging terms gives

ht = ��0+

qX
i=1

��i "
2
t�i+

pX
j=1

��jht�j+
KX
k=1

 
!k(t

�)k +

qX
i=1

'ik(t
�)k"2t�i +

pX
j=1

�jk(t
�)kht�j

!
+R�1

(13)
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where ��s = �s + 
�s1~c0; s = 0; :::; q; ��j = �j + 
�j1~c0; j = 1; :::; p; !k = 
�01~ck;
'ik = 
�i1~ck; i = 1; :::; q; and �jk = 
�j1~ck; k = 1; :::; K: The parameters ~ck; k = 0; :::; K;
are functions of the original location parameters ck: In particular, ~c0 = 1

4

QK
k=1 ck and

~cK = 1
4
: Under H0, the remainder R�1 � 0; so it does not a¤ect the asymptotic null

distribution of the test statistic. Using the reparameterization (13) it follows that the
null hypothesis of parameter constancy becomes

H00 : !k = 'ik = �jk = 0; k = 1; :::; K; i = 1; :::; q; j = 1; :::; p: (14)

This hypothesis can be tested by a standard LM test. One can also test constancy of
a subset of parameters. For example, it may be assumed that �i1 = 0; i = 1; :::; q; and
�j1 = 0; j = 1; :::; p; which means that only the intercept is time-varying under the
alternative. In this case the null hypothesis reduces to H00 : !k = 0; k = 1; :::; K:
In Theorem 1 we de�ne the LM-type statistic for testing parameter constancy against

the additive TV-GARCH speci�cation. Under the null hypothesis, the �hats� indicate
maximum likelihood estimators and ĥ0t denotes the estimated conditional variance at time
t evaluated under H0.

Theorem 1 Consider the model (13) and let �1 = (��0; �
�
1; :::; �

�
q; �

�
1; :::; �

�
p)
0 and

�2 = (!0;'0i;�
0
j)
0 where ! = (!1; :::; !K)

0; 'i = ('i1; :::; 'iK)
0 and �j = (�j1; :::; �jK)

0

for i = 1; :::; q and j = 1; :::; p. In addition, denote zt = (1; "2t�1; :::; "
2
t�q; ht�1; :::; ht�p)

0:
Furthermore, assume that the maximum likelihood estimator of �1 is asymptotically nor-
mal. Under H0 : �2 = 0; the LM type statistic

�LM =
1

2

TX
t=1

ûtx̂
0
2t

8<:
TX
t=1

x̂2tx̂
0
2t �

TX
t=1

x̂2tx̂
0
1t

 
TX
t=1

x̂1tx̂
0
1t

!�1 TX
t=1

x̂1tx̂
0
2t

9=;
�1

TX
t=1

ûtx̂2t (15)

is asymptotically �2-distributed with dim(�2) degrees of freedom, where ût = "̂2t=ĥ
0
t � 1;

x̂1t =
1

ĥ0t

@ĥt
@�1

�����
H0

= (ĥ0t )
�1(ẑ0t +

pX
j=1

�̂
�
j

@ĥt�j
@�1

�����
H0

) (16)

and

x̂2t =
1

ĥ0t

@ĥt
@�2

�����
H0

= (ĥ0t )
�1(((t�ẑt)

0 ;
�
t�2ẑt

�0
; :::;

�
t�K ẑt

�0
)0 +

pX
j=1

�̂
�
j

@ĥt�j
@�2

�����
H0

) (17)

Proof. See Appendix A.

In practice, the test of Theorem 1 may be carried out in a straightforward way using
an auxiliary least squares regression. Thus:

1. Estimate consistently the parameters of the conditional variance under the null
hypothesis, and compute ût = "̂2t=ĥ

0
t � 1; t = 1; :::; T; and the residual sum of

squares, SSR0 =
PT

t=1 û
2
t :

2. Regress ût on x̂01t and x̂
0
2t; t = 1; :::; T; and compute the sum of the squared residuals,

SSR1:

10



3. Compute the �2 test statistic as

�LM =
T (SSR0 � SSR1)

SSR0
:

As a computational detail, note that @ĥt=@�1jH0 and @ĥt=@�2jH0 in (16) and (17) are
obtained recursively in connection with the parameter estimation, where it is assumed
that @ĥt=@�1jH0 = 0 and @ĥt=@�2jH0 = 0 for t = 0;�1; :::. We shall call our LM test
statistic LMK , where K indicates the order of the polynomial in the exponent of the
transition function and the tests carried out by means of an auxiliary regression are called
LM-type tests.
It should also be mentioned that a robust version of the test statistics (15) can be

derived when �t are not identically distributed. One can construct a robust version using
the procedure by Wooldridge (1990,1991). This test can be carried out as follows:

1. Estimate by quasi maximum likelihood the conditional variance under H0; compute
"̂2t=ĥ

0
t � 1; x̂01t and x̂02t; t = 1; :::; T:

2. Regress x̂2t on x̂1t; and compute the (dim�2 � 1) residual vectors rt; t = 1; :::; T:

3. Regress 1 on
�
"̂2t=ĥ

0
t � 1

�
rt and compute the residual sum of squares SSR0 from

this regression. Under the null hypothesis, the test statistic �LMR
= T � SSR0 has

an asymptotic �2 distribution with dim�2 degrees of freedom.

One may extend the Theorem 1 to the case where the model has been estimated with
r � 1 transition functions and one wants to test r � 1 against r transitions. For that
purpose, consider the model

"t = �tht
1=2; "tjFt�1 � N(0; ht)

ht = (�0 +
r�1X
l=1

�1lGl(t
�; 
l; cl))

0zt + �
0
1r
eGr(t�; 
r; cr)zt (18)

where �0 = (�0; �1; :::; �q; �1; :::; �p)
0; �1l = (�0l; �1l; :::; �ql; �1l; :::; �pl)

0; l = 1; :::; r � 1; r;
and zt = (1; "2t�1; :::; "

2
t�q; ht�1; :::; ht�p)

0: The null hypothesis is then H0 : 
r = 0: Again,
model (18) is not identi�ed under the null hypothesis. To circumvent the problem we
proceed as before and expand the logistic function Gr(t�; 
r; cr) into a �rst-order Taylor
approximation around 
r = 0: After rearranging terms we have

ht = (� +

r�1X
l=1

�1lGl(t
�; 
l; cl))

0zt +

KX
k=1

�0k(t
�)kzt +R�2 (19)

where � = �0 + 
r�1r~c0; �k = 
r�1r~ck; k = 1; :::; K: The test statistic is based on the
following corollary of Theorem 1.

Corollary 2 Consider the model (19) and let �1 = (�0;�01l; 
l; c
0
l)
0 and �2 = (�01; :::;�

0
K)

0.
In addition, denote zt = (1; "2t�1; :::; "

2
t�q; ht�1; :::; ht�p)

0 and Gl(t�) � Gl(t
�; 
l; cl): Assume

that the maximum likelihood estimator of (�00;�
0
11; :::;�

0
1;r�1; 
1; :::; 
r�1; c1; :::; cr�1)

0 is as-
ymptotically normal. Under H0 : �2 = 0; the LM type statistic (15) with ût = "̂2t=ĥ

0
t � 1;

x̂1t =
1

ĥ0t

@ĥt
@�1

�����
H0

= (ĥ0t )
�1(ẑ0t+

r�1X
l=1

ẑ0tĜl(t
�)+

r�1X
l=1

�̂
0
1lẑt

@Ĝl(t
�)

@�1

0

+

pX
j=1

(�̂j+
r�1X
l=1

�̂
�
jlĜl(t

�))
@ĥt�j
@�1

�����
H0

)
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and

x̂2t =
1

ĥ0t

@ĥt
@�2

�����
H0

= (ĥ0t )
�1(((t�ẑt)

0 ;
�
t�2ẑt

�0
; :::;

�
t�K ẑt

�0
)0+

pX
j=1

(�̂j+
r�1X
l=1

�̂
�
jlĜl(t

�))
@ĥt�j
@�2

�����
H0

)

has an asymptotic �2�distribution with dim(�2) degrees of freedom.

Remark 3 The assumption of asymptotic normality in this corollary remains unveri�ed.
The existing asymptotic theory of nonlinear GARCH models does not cover the case where
the transition function is a function of time. Besides, Meitz and Saikkonen (in press) who
have worked out asymptotic theory for smooth transition GARCH models, have only ob-
tained results on ergodicity and stationarity. Asymptotic normality of maximum likelihood
estimators has not even been proven for �standard�smooth transition GARCH models in
which the transition variable is a stochastic variable. For these reasons, showing asymp-
totic normality of �1 in (19) is beyond the scope of this paper. Two things should be
emphasized in this context. First, sequential testing to �nd r is just a model selection
device like the model selection criteria such as AIC or BIC. The p-values of the tests are
simply indicators helping the modeller to choose the number of transitions. Second, our
simulation results do not contradict the assumption of the asymptotic null distribution of
the test statistic being a �2�distribution.

3.2 Testing against a multiplicative alternative

In order to consider the problem of testing parameter constancy in the unconditional
variance assume that the error term is parameterized as

"t = �tht
1=2

where ht is a GARCH(p; q) model as in (4) and �t is a time-varying random variable
satisfying

�t = ztg
1=2
t

such that fztg is a sequence of independent standard normal variables and gt = 1 +Pr
l=1 �lGl(t

�; 
l; cl). This formulation allows the unconditional variance of �t and thus "t
to change smoothly over time. Note that f�tg is still a sequence of independent variables.
The null hypothesis of constant unconditional variance is then H0 : �l = 0, l = 1; :::; r: For
the purpose of deriving the test statistic consider r = 1 and rewrite the model as follows:

"t = zt(htgt)
1=2; "tjFt�1 � N(0; htgt)

htgt = (�0 +

qX
i=1

�i"
2
t�i +

pX
j=1

�jht�j)(1 + �1 eG(t�; 
; c)): (20)

The null hypothesis of constant unconditional variance equals H0 : 
 = 0 against H1 :

 > 0: Testing this hypothesis su¤ers from the same identi�cation problem as the test of
parameter constancy against an additive TV-GARCH process. Even here, the solution
consists of approximating the transition function with a Taylor expansion around 
 = 0.
Proceeding as before, we reparameterize equation (20) as follows:

htgt = (�0 +

qX
i=1

�i"
2
t�i +

pX
j=1

�jht�j)(
~�0 +

KX
k=1

!k(t
�)k +R�3) (21)

12



where ~�0 = 1 + 
�1~c0 and !k = 
�1~ck; k = 1; :::; K: Under the null hypothesis, the
remainder R�3 � 0 and does not a¤ect the distribution theory. The null hypothesis of
parameter constancy for the multiplicative structure becomes

H00 : !k = 0; k = 1; :::; K:

The following corollary of Theorem 1 de�nes the LM-type test statistic for testing
parameter constancy in the unconditional variance.

Corollary 4 Consider the model (21) and let �1 = (�0; �1; :::; �q; �1; :::; �p)
0 and

�2 = (!1; :::; !K)
0. In addition, denote zt = (1; "2t�1; :::; "

2
t�q; ht�1; :::; ht�p)

0 and gt =

1 + �1G(t
�; 
; c): Under H0 : �2 = 0; the LM type statistic (15) with ût = "̂2t=ĥ

0
t � 1;

x̂1t =
1

ĥ0t

@ĥt
@�1

�����
H0

= (ĥ0t )
�1(ẑ0t +

pX
j=1

�̂
�
j

@ĥt�j
@�1

�����
H0

)

and

x̂2t =
1

ĝ0t

@ĝt
@�2

����
H0

= (t�; t�2; :::; t�K)0

has an asymptotic �2�distribution with dim(�2) degrees of freedom.

Once the TV-GARCH model with a single transition has been estimated we may want
to investigate the possibility of remaining parameter nonconstancy in the unconditional
variance. This is important from the model speci�cation point of view. Thus, similarly
to the additive structure, the previous corollary may be extended to the case where we
want to test r = 1 against r � 2: To derive the test, consider the model

"t = zt(htgt)
1=2; "tjFt�1 � N(0; htgt)

htgt = (�0 +

qX
i=1

�i"
2
t�i +

pX
j=1

�jht�j)(1 +
P2

l=1 �lGl(t
�; 
l; cl)): (22)

The null hypothesis is H0 : 
2 = 0: Again, model (22) is only identi�ed under the al-
ternative. The solution to the identi�cation problem consists of replacing the transition
function G2(t�; 
2; c2) by a Taylor approximation around 
2 = 0: After a reparameteriza-
tion, the resulting model is

htgt = (�0 +

qX
i=1

�i"
2
t�i +

pX
j=1

�jht�j)(~�0 + �1G1(t
�; 
1; c1) +

KX
k=1

!k(t
�)k +R�4) (23)

where ~�0 = 1+ 
�1~c0 and !k = 
�1~ck; k = 1; :::; K: Under the null, the remainder R�4 � 0:
The next corollary to Theorem 1 gives the test statistic. The notation ĝ0t denotes the

estimated gt evaluated under H0:

Corollary 5 Consider the model (23) and let �1 = (�0; �1; :::; �q; �1; :::; �p; �1; 
1; c01)
0 and

�2 = (!1; :::; !K)
0. In addition, denote zt = (1; "2t�1; :::; "

2
t�q; ht�1; :::; ht�p)

0 and gt = 1 +P2
l=1 �lGl(t

�; 
l; cl). Under H0 : �2 = 0; the LM type statistic (15) with ût = "̂2t=ĥ
0
t ĝ
0
t � 1;

x̂1t =
1

ĥ0t

@ĥt
@�1

�����
H0

= (ĥ0t )
�1(ẑ0tĝ

0
t + ĥ0t

@ĝ0t
@�1

0

+

pX
j=1

�̂j ĝ
0
t

@ĥt�j
@�1

�����
H0

)
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and

x̂2t =
1

ĝ0t

@ĝt
@�2

����
H0

= (ĝ0t )
�1(t�; t�2; :::; t�K)0

has an asymptotic �2�distribution with dim(�2) degrees of freedom.

Remark 6 The previous remark is valid even here.

A special case of this test, in which ht � �0; will be used in the speci�cation of
multiplicative TV-GARCH models in Section 4.2.

4 Model speci�cation

We propose a model-building cycle for TV-GARCH models identical to the speci�c-to-
general strategy for nonlinear models recommended by Granger (1993) or Teräsvirta
(1998), among others. The idea is to start with a parsimonious model and proceed to
more complicated ones until the evaluation techniques indicate that an adequate model
has been obtained. Adapting this approach to the present situation means determining
the number of smooth transitions sequentially by LM-type tests discussed in Section 3.
These tests can be used to build a GARCH model with time-varying parameters using
either the additional or the multiplicative structure. We start with a restricted speci-
�cation such as a GARCH(1,1) model and gradually increase the number of transition
functions as long as the hypothesis of parameter constancy is rejected. The �nal model
is estimated after the �rst non-rejection of the null hypothesis and evaluated through a
sequence of misspeci�cation tests.

4.1 Speci�cation of additive TV-GARCH models

In order to describe the speci�cation procedure for TV-GARCHmodels with an additional
time-varying structure consider the function gt de�ned in (7) such that all parameters are
changing smoothly over time. However, the strategy may also be applied to a more
restrictive functions such as gt in (8). The time-varying conditional variance is

ht = �0 +

qX
i=1

�i"
2
t�i +

pX
j=1

�jht�j +

rX
l=1

(�0l +

qX
i=1

�il"
2
t�i +

pX
j=1

�jlht�j)Gl(t
�; 
l; cl); (24)

where the transition function Gl(t�; 
l; cl) is de�ned in (6).
Our speci�cation procedure for building TV-GARCH models in an additive form con-

tains the following stages:

1. Check for the presence of conditional heteroskedasticity by testing the null hypoth-
esis of no ARCH against high-order ARCH. When the order of the ARCH process
is su¢ ciently high, the standard LM test has adequate power against GARCH. If
the null hypothesis is rejected, model the conditional variance by a GARCH(1,1)
model. Evaluate the estimated GARCH(1,1) model by misspeci�cation tests and,
if necessary, expand it to a higher-order model. The squared standardized errors of
the selected GARCH model should be free of serial correlation. Neglected autocor-
relation may bias tests of parameter constancy.
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2. Test the �nal GARCH model against the alternative of smoothly changing parame-
ters over time using the LM-type statistic described in Theorem 1. If parameter con-
stancy is rejected at a predetermined signi�cance level �, estimate the TV-GARCH
model (24) with a single transition function. If the null hypothesis of parameter
constancy in (14) is rejected, the problem of choosing the order of the polynomial
of the transition function arises. For the speci�cation of K; we propose a model
selection rule based on a sequence of nested tests as in Teräsvirta (1994) and Lin
and Teräsvirta (1994). Assume K = 3 to ensure a parameterization su¢ ciently �ex-
ible for G(t�; 
; c): If parameter constancy is rejected, test the following sequence of
hypotheses:

H03 : !3 = 0; 'i3 = 0; �j3 = 0;

H02 : !2 = 0; 'i2 = 0; �j2 = 0 j !3 = 0; 'i3 = 0; �j3 = 0;
H01 : !1 = 0; 'i1 = 0; �j1 = 0 j !2 = !3 = 0; 'i2 = 'i3 = 0; �j2 = �j3 = 0;

where i = 1; :::; q; j = 1; :::; p; in (13), by means of LM-type tests. The test sequence
may be used as follows. If H01 and H03 are rejected more strongly, measured by
p-values, than H02; then either K = 1 or K = 3: If testing H02 yields the strongest
rejection, the choice is K = 2: Furthermore, if only H01 is rejected at the appro-
priate signi�cance level or is rejected clearly more strongly than the other two null
hypotheses, then the modeller should choose K = 1: Visual inspection of the re-
turn series is also helpful in making a decision about K. The rules or suggestions
based on p-values are based on expressions of the parameters !k; 'ik and �jk in the
auxiliary regression as functions of the original parameters at di¤erent values of K:
The test sequence is analogous to that proposed in Teräsvirta (1994) for specifying
the type of the smooth transition autoregressive model, where the choice is between
K = 1 and K = 2.

3. Test the TV-GARCH model with one transition function against the TV-GARCH
model with two transition functions at the signi�cance level ��; 0 < � < 1. The
signi�cance level is decreased giving a preference for parsimonious models. The
overall signi�cance of the sequence of tests may be approximated by the Bonferroni
upper bound. The user can choose the value for � : In our simulations we set � = 1=2.
If the null hypothesis is rejected, specify K for the next transition and estimate the
TV-GARCH model (12) assuming two transition functions.

4. Proceed sequentially by testing the TV-GARCH model with r � 1 transition func-
tions against the TV-GARCHmodel with r transitions at the signi�cance level �� r�1

until the �rst non-rejection of the null hypothesis. Evaluate the selected model by
misspeci�cation tests and once it passes them accept it as the �nal model. In the
opposite case, modify the speci�cation of the model or try another family of models.

4.2 Speci�cation of multiplicative TV-GARCH models

The speci�c-to-general approach for specifying TV-GARCH models with a multiplicative
time-varying component consists in �rst modelling the unconditional variance as follows:

1. Use the LM-type statistic developed in Section 3.2 to test the null hypothesis
of constant variance against a time-varying unconditional variance with a single
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transition function at the signi�cance level �. First, assume ht = �0 and test
H10 : gt � 1 against H11 : gt = 1 + �1G1(t

�; 
1; c1): In case of a rejection, test
H20 : gt = 1 + �1G1(t

�; 
1; c1) against H21 : gt = 1 +
P2

l=1 �lGl(t
�; 
l; cl) at the

signi�cance level ��; 0 < � < 1: Continue until the �rst non-rejection of the null
hypothesis. The signi�cance level is reduced at each step of the testing procedure
and converging to zero for reasons previously mentioned.

2. After specifying gt; test the null hypothesis of no conditional heteroskedasticity in
f�tg: If it is rejected, model the conditional variance ht of the standardized variable
"t=g

1=2
t in the standard fashion, such that

ht = ��0 +

qX
i=1

�i

�
"2t�i
gt�i

�
+

pX
j=1

�jht�j: (25)

3. The estimated model is evaluated by means of LM-type diagnostic tests proposed
by Lundbergh and Teräsvirta (2002). If the model passes all the misspeci�cation
tests tentatively accept it. Otherwise, it should be modi�ed or the researcher may
want to switch to another family of volatility models.

5 Estimation of the TV-GARCH model

Suppose that "t is generated by GARCH model with a time-varying structure described
in Section 2. Let ht = ht(�1) and gt = gt(�2) where �1 = (�0; �1; :::; �q; �1; :::; �p)

0 and
�2 = (�

0;�01; :::;�
0
r;�

0
1; :::;�

0
r; 
1; :::; 
r; c1; :::; cr)

0 with � = (�1; :::; �r)0; �i = (�1i; :::; �qi)0

and �i = (�1i; :::; �pi)
0; i = 1; :::; r: For the additive parameterization, � = 0 and for the

multiplicative one, �i = 0 and �i = 0: The quasi maximum likelihood (QML) estimatorb� = (b�01;b�02)0 is obtained maximizingPT
t=1 `t(�) with respect to � where the log-likelihood

for observation t equals

`t(�) = �
1

2
ln 2� � 1

2
lnfht(�1) + gt(�2)g �

1

2

"2t
ht(�1) + gt(�2)

(26)

for the additive TV-GARCH model or

`t(�) = �
1

2
ln 2� � 1

2
flnht(�1) + ln gt(�2)g �

1

2

"2t
ht(�1)gt(�2)

(27)

for the multiplicative TV-GARCH model.
The asymptotic properties of the QML estimators for the GARCH(p; q) process have

been studied, among others, by Ling and Li (1997). They showed that the QML esti-
mators are consistent and asymptotic normal provided that E"4t <1: Ling and McAleer
(2003) established consistency for the global maximum of QML estimators under the con-
dition E"2t < 1. Berkes, Horváth, and Kokoszka (2003) obtain consistency of the QML
estimators assuming E"2t < 1 and asymptotic normality by assuming E"4t < 1: These
results have in common the assumption that the process yt is stationary and ergodic such
that the laws of large numbers apply. More recently, Jensen and Rahbek (2004) relax this
assumption and allow the parameters to lie in the region where the process is nonstation-
ary. They show that for the GARCH(1,1) case, under a �nite conditional variance for
�2t ; consistency and asymptotic normality still hold independently of whether the process
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yt is stationary or not. As already mentioned, asymptotic normality for the parameter
estimators of the TV-GARCH models has so far not been proven.
Three remarks are in order regarding numerical aspects of the estimation of TV-

GARCH models. The �rst one concerns the accuracy of the slope estimates when the
true parameters 
l are very large. In order to achieve an accurate estimate for a large 
l;
the number of observations of the transition variable in the neighbourhood of cl must be
very large. This is due to the fact that even large changes in 
l only have an e¤ect on
the transition function in a small neighbourhood of cl: But then, for the same reason it
is su¢ cient to obtain an estimate of 
l that is large; whether or not it is very accurate
is not of utmost importance. Otherwise, rather few observations close to the locations
cl imply rather imprecise estimates of the slope parameters. Note that if 
̂l is large,
an �insigni�cant� 
̂l is an indication of a large 
l; not of 
l � 0: Besides, because of the
identi�cation problem the t-ratio does not have its standard asymptotic distribution when

l � 0. A more serious problem is that large estimates for the smoothness parameter 
l
may lead to numerical problems when carrying out parameter constancy tests. A simple
solution (see Eitrheim and Teräsvirta (1996)) is to omit those elements of the score that
are partial derivatives with respect to the parameters in the transition function. This can
be done without signi�cantly a¤ecting the value of the test statistic.
The second comment has to do with the computation of the derivatives of the log-

likelihood function. Many of the existing optimization algorithms require the computation
of at least the �rst and, in some cases, also the second derivatives of the log-likelihood
function. It is common practice to use numerical derivates that are relatively fast to com-
pute and reliable, and the derivation of exact analytic derivatives is avoided. Fiorentini,
Calzolari, and Panattoni (1996), however, encourage the employment of analytic deriva-
tives because they require fewer iterations than optimization with numerical derivatives.
Furthermore, they also improve the accuracy of the estimates of the standard errors of
the parameter estimates. Consequently, we use analytic �rst derivatives in all the com-
putations necessary both in calculating values of the test statistics and in estimating
TV-GARCH models.
The third remark is related to the manner the parameter estimates are obtained. The

parameters in the additive TV-GARCH model are estimated simultaneously by full con-
ditional maximum likelihood. In this context, the modeller should proceed carefully with
the estimation. Since several local maxima may occur, it is recommended to initiate the
estimation by choosing di¤erent sets of starting-values before de�ning the �nal parame-
ter estimates. The estimation problem of the multiplicative TV-GARCH model can be
alleviated by concentrating the likelihood iteratively. This alternative reduces consider-
ably the dimensionality problem and it is computationally easier than maximizing the
log-likelihood (27) with respect to all parameters simultaneously. The estimation of the
TV-GARCH model with multiplicative structure can be simpli�ed since the log-likelihood
can be decomposed into two separate sets of parameters: conditional heteroskedastic and
time-varying parameter vectors. The estimation is divided in two steps which are then
repeated sequentially. The iterations start by �rst estimating �2; given ht as a positive
constant, say ht = �̂2 = T�1

PT
t=1 "

2
t ; and continue by estimating �1; given the estimates

of �2: The parameter estimates obtained in each iteration will be used then as starting-
values for the next iteration. The iterative two-step estimation procedure continues until
a local maximum value of the log-likelihood has been reached.
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6 Misspeci�cation testing of TV-GARCH models

The �nal step of the modelling strategy consists of evaluating the adequacy of the es-
timated TV-GARCH model by means of a sequence of misspeci�cation tests. We shall
assume that the true process of either the additive or the multiplicative time-varying
variance is misspeci�ed. To describe the tests we begin by introducing a misspeci�cation
structure for each parameterization and, thereafter, consider each test separately. The
general idea is to construct an augmented version of the TV-GARCH model by introduc-
ing a new component ft = f(vt;�3) into the original model. This component is a function
that is at least twice continuously di¤erentiable with respect to the elements of �3; vector
of additional parameters. The vector vt is a vector of omitted random variables.

6.1 Misspeci�cation tests for the multiplicative model

The misspeci�cation tests considered here may be divided into three categories. The
�rst two of these can be characterized as an additive misspeci�cation and the third one
viewed as a multiplicative misspeci�cation. Let ht = ht(�1) and gt = gt(�2); such that
the parameter vectors �i; i = 1; 2; represent the parameters belonging to ht = �0 +Pq

i=1 �i"
2
t�i +

Pp
j=1 �jht�j and gt = 1 +

Pr
l=1 �lGl(t

�; 
l; cl): Under H0 : �3 = 0, the
augmented model reduces to the multiplicative TV-GARCH model.

6.1.1 Additive misspeci�cation - case 1

The �rst category of tests assumes that, under the alternative hypothesis, the original
TV-GARCH model may be extended by assuming

"t = �t(ht + ft)
1=2g

1=2
t : (28)

Under the null hypothesis, ft � 0; which is equivalent to �3 = 0: If gt � 1; the test col-
lapses into the additive test in Lundbergh and Teräsvirta (2002). At least three types of al-
ternative hypotheses can be considered in this class of tests. The test of the GARCH(p; q)
component against higher-order alternatives as well as the test against a smooth transition
GARCH (ST-GARCH) and the test against an asymmetric component (GJR-GARCH)
belong to the additive class (28).
The log-likelihood function for observation t of model (28) is

`t = �
1

2
ln 2� � 1

2
fln(ht + ft) + ln gtg �

"2t
2(ht + ft)gt

: (29)

When the estimated multiplicative TV-GARCHmodel is tested against the di¤erent types
of alternatives, the �rst component of the score corresponding to �1 and �2; evaluated
under H0; is equal to

@`t
@�

����
H0

=
1

2

�
"2t
htgt

� 1
�
x1t

where x1t =
�
1
ht
@ht
@�1

; 1
gt

@gt
@�2

�0
and the parameter vector � is partitioned as � = (�01;�

0
2)
0:
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The estimated quantities for @ht
@�1
jH0 and @gt

@�2
jH0 are de�ned as

@ĥt
@�1

�����
H0

= ẑ0t +

pX
j=1

�̂j
@ĥt�j
@�1

�����
H0

(30)

@ĝt
@�2

����
H0

=
rX
l=1

Gl(t
�; 
̂l; ĉl) +

rX
l=1

�̂l
@Gl(t

�; 
̂l; ĉl)

@�2

0
: (31)

The di¤erences show up in the partial derivatives of (29) with respect to �3: It follows
that the additional block of the score for observation t due to �3 has the form

@`t
@�3

=
1

2

�
"2t

(ht + ft)gt
� 1
�
1

ht

@ft
@�3

so that, under H0;
@`t
@�3

����
H0

=
1

2

�
"2t
htgt

� 1
�
1

ht

@ft
@�3

����
H0

where @ft
@�3

= v0t: The resulting LM test may be easily performed using an auxiliary regres-
sion as in Section 3. In terms of previous notation, we have

x̂1t =

 
1

ĥ0t

@ĥt
@�1

�����
H0

;
1

ĝ0t

@ĝt
@�2

����
H0

!0
(32)

x̂2t =
1

ĥ0t

@f̂t
@�3

�����
H0

=
v̂0t

ĥ0t
(33)

where @ĥt
@�1
jH0 and @ĝt

@�2
jH0 are given in (30) and (31), respectively. We shall now concentrate

our attention on tests against higher-order alternatives and a smooth transition GARCH
model.

Testing the GARCH(p; q) component against higher-order alternatives

An evident source of misspeci�cation is to select too low an order in the GARCH(p; q)
component. A similar testing procedure to the one proposed by Bollerslev (1986) for
testing a GARCH(p; q) model against higher-order alternatives is presented. Under the
alternative GARCH(p; q + r); the additional component equals

ft =

q+rX
i=q+1

�i"
2
t�i (34)

or

ft =

p+rX
j=p+1

�jht�j (35)

if we take the GARCH(p + r; q) as alternative. The identi�cation problem discussed
in Bollerslev (1986) prevents us from considering the alternative GARCH(p + r; q + s);
r; s > 0: Under the null hypothesis H0 : �3 = 0; i.e. �q+1 = ::: = �q+r = 0 for the former
case and �p+1 = ::: = �p+r = 0 for the latter case, the models reduce to the GARCH(p; q)
model.
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Corollary 7 de�ne the test statistics for testing �q+1 = :::: = �q+r = 0. A similar
result holds for testing �p+1 = :::: = �p+r = 0 in (35) and can be stated by replacing �3 =
(�q+1; ::::; �q+r)

0 and v̂t = ("2t�(q+1); :::; "
2
t�(q+r))

0 in Corollary 7 by �3 = (�p+1; ::::; �p+r)
0

and v̂t = (ht�(p+1); :::; ht�(p+r))0:

Corollary 7 Consider the model (28) where f�tg is a sequence of independent standard
normal variables. Let �1 = (�0; �1; :::; �q; �1; :::; �p)

0 and �2 = (�0; 
1; :::; 
r; c1; :::; cr)
0

with � = (�1; :::; �r)
0: Furthermore, ft is de�ned by (34) such that �3 = (�q+1; :::; �q+r)

0

and v̂t = ("2t�(q+1); :::; "
2
t�(q+r))

0. Assume that the maximum likelihood estimators of the
parameters of (28) are asymptotically normal when H0 : �3 = 0 is valid. Thus, under this
null hypothesis, the LM statistic (15), with ût = "̂2t=ĥ

0
t ĝ
0
t � 1; x̂1t as in (32) and x̂2t as in

(33) is asymptotically �2�distributed with r degrees of freedom.

Remark 8 Note that the result stated in Corollary 7 depend on an assumption of asymp-
totic normality that so far remains unproven. The asymptotic normality has, however,
been proven in the special case �2 = 0 when the null model (28) is a standard GARCH(p,q)
model. A similar remark holds for Corollaries 9, 10, 11 and 12.

Testing the GARCH(p; q) component against a nonlinear speci�cation

It is possible that responses of volatility in �nancial series to negative and positive
shocks are not symmetric around zero (or some other value). The GARCH literature
o¤ers a variety of parameterizations for describing asymmetric e¤ects of shocks on the
conditional variance. The ST-GARCH model, discussed in Hagerud (1997), González-
Rivera (1998) and Anderson, Nam, and Vahid (1999), is one of them. Symmetry of
the estimated TV-GARCH can be tested against asymmetry or, more generally, against
nonlinearity, using these models as alternatives. To this end, let

ft =

qX
i=1

(��1i + ��2i"
2
t�i)G("t�i; 
; c) (36)

where G("t�i; 
; c) is the transition function given in (6) with "t�i as the transition vari-
able. With the purpose of simplifying the derivation of the test we replace G("t�i; 
; c)
by eG("t�i; 
; c) = G("t�i; 
; c)� 1=2: The null hypothesis of linearity is H0 : 
 = 0 under
which G("t�i; 
; c) � 1=2: However, the remaining parameters in (36) are not identi�ed
under the null hypothesis. Again the identi�cation problem may be circumvented using
a Taylor series approximation of the transition function around 
 = 0. After rearranging
terms, one obtains

ht + ft = ��0 +

qX
i=1

��i "
2
t�i +

pX
j=1

�jht�j +

qX
i=1

KX
k=1

($ik"
k
t�i + �ik"

k+2
t�i ) +R�5 (37)

where ��0 = �0 +
Pq

i=1 
�
�
1i~c0; �

�
i = �i + 
��2i~c0; $ik = 
��1i~ck and �ik = 
��2i~ck: The

component given in (36) can be rewritten as

ft =

qX
i=1

KX
k=1

($ik"
k
t�i + �ik"

k+2
t�i ) +R�5 (38)

Note that, when the null hypothesis holds, the remainder R�5 vanishes and so it does not
a¤ect the distributional properties of the test. Using this notation, the hypothesis of no
additional nonlinear structure becomes H00 : $ik = �ik = 0; i = 1; :::; q; k = 1; :::; K: The
next corollary gives the test statistic.
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Corollary 9 Consider the model (28) where f�tg is a sequence of independent standard
normal variables. Let �1 = (�0; �1; :::; �q; �1; :::; �p)

0 and �2 = (�0; 
1; :::; 
r; c1; :::; cr)
0

with � = (�1; :::; �r)0: Furthermore, ft is de�ned by (38) such that �3 = ($0
i;�

0
i)
0; where

$i = ($i1; :::; $iK)
0 and �i = (�i1; :::; �iK)0; i = 1; :::; q: In addition, let v̂t = (v̂01;t; :::; v̂

0
K+2;t)

0

with vit = ("it�1; :::; "
i
t�q)

0; i = 1; :::; K+2: Assume that the maximum likelihood estimators
of the parameters of (28) are asymptotically normal when H0 : �3 = 0 is valid. Thus,
under this null hypothesis, the LM statistic (15), with ût = "̂2t=ĥ

0
t ĝ
0
t � 1; x̂1t as in (32)

and x̂2t as in (33) is asymptotically �2�distributed with dim(�3) degrees of freedom.

6.1.2 Additive misspeci�cation - case 2

The starting point here is that the TV-GARCH model is again additively misspeci�ed.
In this case, the misspeci�ed model has the following form:

"t = �th
1=2
t (gt + ft)

1=2 (39)

Under the null hypothesis, ft � 0; which is again equal to �3 = 0: The model again
reduces to (1) and (3). The log-likelihood for the observation t equals

`t = �
1

2
ln 2� � 1

2
flnht + ln(gt + ft)g �

"2t
2ht(gt + ft)

:

The block of the score containing the �rst partial derivatives with respect to �3 is

@`t
@�3

=
1

2

�
"2t

ht(gt + ft)
� 1
�
1

gt

@ft
@�3

which, under H0; is equal to

@`t
@�3

����
H0

=
1

2

�
"2t
htgt

� 1
�
1

gt

@ft
@�3

����
H0

:

For this alternative, the quantity x̂1t is de�ned as in (32) and

x̂2t =
1

ĝ0t

@f̂t
@�3

�����
H0

=
v̂0t
ĝ0t
: (40)

Testing the hypothesis of no additional transitions

Once the TV-GARCHmodel has been estimated, one may use this set-up, for example,
to re-check the need for another transition function in gt: Taking the multiplicative TV-
GARCH model with r + s transitions as the alternative, it follows that

ft =
r+sX
l=r+1

�lGl(t
�; 
l; cl) (41)

The hypothesis of no additional transitions is H0 : 
r+1 = ::: = 
r+s = 0: Under this
hypothesis, the parameters (�l; c0l)

0 are not identi�ed. To circumvent this problem, we
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replace the transition function Gl(t
�; 
l; cl) by its �rst-order Taylor expansion around


l = 0; l = r + 1; :::; r + s: After merging terms, we obtain

gt + ft = 1 +

rX
l=1

�lGl(t
�; 
l; cl) +

r+sX
l=r+1

�l(
~c0 +
KX
k=1


~ck(t
�)k) +R�6

= ��l +
rX
l=1

�lGl(t
�; 
l; cl) +

r+sX
l=r+1

KX
k=1

 lk(t
�)k +R�6 (42)

where ��l = 1 +
Pr+s

l=r+1 
�l~c0 and  lk = 
�l~ck; l = r + 1; :::; r + s; k = 1; :::; K: It is
convenient to reparameterize (41) as follows:

ft =

r+sX
l=r+1

KX
k=1

 lk(t
�)k +R�6 (43)

Under the null hypothesis, the remainder R�6 vanishes. It seems that the coe¢ cients  lk;
l = r + 1; :::; s; for a �xed k; are not identi�ed because they are all related to the same
variable (t�)k: They have to be merged, which leads to

ft =
KX
k=1

 �k(t
�)k +R�6:

In other words, the test statistic is the same independent of whether we test against
including Gr+1 or including Gr+1; :::; Gr+s; s � 2: Compare this with Corollary 5, which
is a special case. In fact, Corollary 5 gives another example of a misspeci�cation test of
the multiplicative model in which the misspeci�cation is of the type ht(gt + ft):

6.1.3 Multiplicative misspeci�cation

Under multiplicative misspeci�cation, the parametric alternative to the TV-GARCH
model is formulated as

"t = �t(htgtft)
1=2: (44)

In this framework, H0 : ft � 1; which is equivalent to �3 = 0: Under the null hypothesis,
the model reduces to the multiplicative TV-GARCH model. For this speci�cation, the
log-likelihood function for observation t may be written

`t = �
1

2
ln 2� � 1

2
(lnht + ln gt + ln ft)�

"2t
2htgtft

:

The additional block of the score has the form

@`t
@�3

=
1

2

�
"2t

htgtft
� 1
�
@ft
@�3

which, under H0; reduces to

@`t
@�3

����
H0

=
1

2

�
"2t
htgt

� 1
�
@ft
@�3

����
H0

:

22



Taking (44) as the alternative, the vector x̂1t is given in (32) and

x̂2t =
@f̂t
@�3

�����
H0

= v̂0t: (45)

This category includes general misspeci�cation tests of adequacy of the estimated speci-
�cation. After the estimation of the TV-GARCH model, one may want to check whether
the estimated standardized errors still contain some structure. In the GARCH context,
Lundbergh and Teräsvirta (2002) proposed a Lagrange multiplier statistic for testing the
hypothesis of no remaining ARCH which is asymptotically equivalent to the portmanteau
statistic introduced by Li and Mak (1994). It is straightforward to generalize a similar
test statistic for the multiplicative TV-GARCH model.

Testing the hypothesis of no remaining ARCH

An important misspeci�cation test for the multiplicative TV-GARCH speci�cation is
the so-called �ARCH-in-GARCH�test. The original model

"t = �th
1=2
t g

1=2
t ; �t � nid(0; 1)

is extended by assuming that, under the alternative, �t = �tf
1=2
t ; where �t � nid(0; 1);

and

ft = 1 +
sX
j=1

�j�
2
t�j: (46)

The hypothesis of interest is H0 : �1 = ::: = �s = 0 and
@ bft
@�3
jH0 = (b�21; :::;b�2s)0: Some special

case can be considered. If gt � 1; the test collapses into the test of �no ARCH-in-GARCH�
in Lundbergh and Teräsvirta (2002). If ht � 1 as well, the test coincides with the Engle�s
test of no ARCH. Setting only ht � 1; it reduces to the test of no ARCH in "t=bg1=2t : The
test is presented in the next Corollary.

Corollary 10 Consider the model (44) where f�tg is a sequence of independent standard
normal variables. Let �1 = (�0; �1; :::; �q; �1; :::; �p)

0 and �2 = (�0; 
1; :::; 
r; c1; :::; cr)
0

with � = (�1; :::; �r)
0: Furthermore, ft is de�ned by (46) such that �3 = (�1; :::; �s)

0 and

v̂t = (b�21; :::;b�2s)0: Assume that the maximum likelihood estimators of the parameters of (44)
are asymptotically normal when H0 : �3 = 0 is valid. Thus, under this null hypothesis,
the LM statistic (15), with ût = "̂2t=ĥ

0
t ĝ
0
t � 1; x̂1t as in (32) and x̂2t = v̂0t is asymptotically

�2�distributed with s degrees of freedom.

6.2 Misspeci�cation tests for the additive model

Now we shall consider the additive TV-GARCH model and assume that it is either addi-
tively or multiplicatively misspeci�ed. The former possibility may include, for example,
tests against remaining nonlinearity and additional transitions, whereas the test of the
adequacy of the estimated model belongs to the latter one. To this end, let ht = ht(�1)
and gt = gt(�2); such that �i; i = 1; 2; represent the parameters belonging to ht = �0 +Pq

i=1 �i"
2
t�i +

Pp
j=1 �jht�j and gt =

Pr
l=1(�0l +

Pq
i=1 �il"

2
t�i +

Pp
j=1 �jlht�j)Gl(t

�; 
l; cl):
Under the null hypothesis of no misspeci�cation, the extended model reduces to the ad-
ditive TV-GARCH parameterization.
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6.2.1 Additive misspeci�cation

In order to de�ne the set of alternative models for this class, consider a general alternative
written as

"t = �t(ht + gt + ft)
1=2: (47)

Under the null hypothesis, ft � 0: If gt � 0; the test coincides to the additive test devel-
oped in Lundbergh and Teräsvirta (2002). In the case of the additive parameterization,
the diagnostics tests mentioned earlier in Sections 6.1.1 and 6.1.2 belong to class (47).
Such tests can be easily applied into this context where the quantities ût; x̂it; i = 1; 2;
and v̂t have to be modi�ed accordingly. We shall, therefore, be concerned with a general
alternative hypothesis rather than setting up individual situations.
The log-likelihood function for observation t is

`t = �
1

2
ln 2� � 1

2
fln(ht + gt + ft)g �

"2t
2(ht + gt + ft)

and the �rst partial derivatives with respect to � = (�01;�
0
2)
0; under H0; is

@`t
@�

����
H0

=
1

2

�
"2t

ht + gt
� 1
�
x1t

where x1t =
�

1
ht+gt

@ht
@�1

; 1
ht+gt

@gt
@�2

�0
: The appropriate estimates of @ht

@�1
jH0 and @gt

@�2
jH0 are

@ĥt
@�1

�����
H0

= ẑ0t +

pX
j=1

�̂j
@ĥt�j
@�1

�����
H0

(48)

@ĝt
@�2

����
H0

=
rX
l=1

ẑ0tĜl(t
�) +

rX
l=1

�̂
0
2lẑt

@Ĝl(t
�)

@�2

0

+

pX
j=1

rX
l=1

�̂jlĜl(t
�)
@ĝt�j
@�2

����
H0

(49)

where zt = (1; "2t�1; :::; "
2
t�q; ht�1; :::; ht�p)

0; �2l = (�0l; �1l; :::; �ql; �1l; :::; �pl)
0; l = 1; :::; r;

and Gl(t�) � Gl(t
�; 
l; cl): The additional block of the score for observation t; under H0;

equals
@`t
@�3

����
H0

=
1

2

�
"2t

ht + gt
� 1
�

1

ht + gt

@ft
@�3

����
H0

where @ft
@�3

= v0t: To de�ne the LM statistic, set

x̂1t =

 
1

ĥ0t + ĝ0t

@ĥt
@�1

�����
H0

;
1

ĥ0t + ĝ0t

@ĝt
@�2

����
H0

!0
(50)

x̂2t =
1

ĥ0t + ĝ0t

@f̂t
@�3

�����
H0

=
v̂0t

ĥ0t + ĝ0t
(51)

where @ĥt
@�1
jH0 and @ĝt

@�2
jH0 are given in (48) and (49), respectively. These results apply

to the test against remaining nonlinearity. The test will be presented in the following
Corollary.
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Corollary 11 Consider the model (47) where f�tg is a sequence of independent standard
normal variables. Let �1 = (�0; �1; :::; �q; �1; :::; �p)

0; �2 = (�0; 
1; :::; 
r; c1; :::; cr)
0 with

� = (�1; :::; �r)
0 and �3 = ($0

i;�
0
i)
0; where $i = ($i1; :::; $iK)

0 and �i = (�i1; :::; �iK)
0;

i = 1; :::; q: Assume that the maximum likelihood estimators of the parameters of (47)
are asymptotically normal when H0 : �3 = 0 is valid. Thus, under this null hypothesis,
the LM statistic (15), with ût = "̂2t=(ĥ

0
t + ĝ0t ) � 1; x̂1t as in (50) and x̂2t as in (51)

with v̂t = (v̂01;t; :::; v̂
0
K+2;t)

0 where vit = ("it�1; :::; "
i
t�q)

0; i = 1; :::; K + 2; is asymptotically
�2�distributed with dim(�3) degrees of freedom.

6.2.2 Multiplicative misspeci�cation

Consider the following extended TV-GARCH model

"t = �t(ht + gt)
1=2f

1=2
t : (52)

Under the null hypothesis, ft � 1: This category entails the test for assessing the adequacy
of the functional form of the estimated model. This test was already discussed when the
TV-GARCH model was in the multiplicative form and the same considerations apply
here.
The log-likelihood function for a single observation on (52) is

`t = �
1

2
ln 2� � 1

2
fln(ht + gt) + ln ft)g �

"2t
2(ht + gt)ft

and the relevant block of the score due to �3; under H0; has the form

@`t
@�3

����
H0

=
1

2

�
"2t

ht + gt
� 1
�
@ft
@�3

����
H0

:

The hypothesis of interest is that the squared standardized error sequence is iid. Under
the alternative, ft is de�ned in (46). In this framework, the vector x̂1t is given as in (50)
and x̂2t =

@f̂t
@�3
jH0 = v̂0t: The following Corollary de�nes the test statistic.

Corollary 12 Consider the model (52) where f�tg is a sequence of independent standard
normal variables. Let �1 = (�0; �1; :::; �q; �1; :::; �p)

0 and �2 = (�0; 
1; :::; 
r; c1; :::; cr)
0

with � = (�1; :::; �r)
0: Furthermore, ft is de�ned by (46) such that �3 = (�1; :::; �s)

0 and

v̂t = (b�21; :::;b�2s)0: Assume that the maximum likelihood estimators of the parameters of (52)
are asymptotically normal when H0 : �3 = 0 is valid. Thus, under this null hypothesis, the
LM statistic (15), with ût = "̂2t=(ĥ

0
t + ĝ

0
t )�1; x̂1t as in (50) and x̂2t = v̂0t is asymptotically

�2�distributed with s degrees of freedom.

7 Simulation study

7.1 Monte Carlo design

In this section, we conduct a small simulation experiment to evaluate the �nite-sample
properties of the proposed parameter constancy tests. These are the tests against an
additive and a multiplicative TV-GARCH speci�cations. Speci�cally, we shall investigate
the size and power properties of the LM-type tests involved in the modelling strategies as
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well as the success rate of the speci�cation procedures. Sample lengths of 1000, 2500 and
5000 observations have been used in all simulations. For each design, the total number of
replications equals 2000. To avoid the initialization e¤ects, the �rst 1000 observations have
been discarded before generating the actual series. All the computations have been carried
out using Ox, version 3.30 (see Doornik (2002)). The behaviour of the test statistics is
examined for several data generating processes (DGP�s) that can be nested in the following
TV-GARCH speci�cation:

yt = "t; "tjFt�1 � N(0; ht)

ht = �0 + �1"
2
t�1 + �1ht�1 + (�01 + �11"

2
t�1 + �11ht�1)G1(t

�; 
1; c1): (53)

The data generating processes are as following:

DGP (i) ht = 0:10 + �1"
2
t�1 + �1ht�1

�1 = f0:05; 0:09; 0:10g and �1 = f0:80; 0:85; 0:90g

DGP (ii) ht = 0:10 + �01G1(t
�; 
1; c1) + 0:10"

2
t�1 + 0:80ht�1

�01 = f0:10; 0:30g

DGP (iii) ht = 0:10 + (0:10 + �11G1(t
�; 
1; c1))"

2
t�1 + 0:80ht�1

�11 = f0:05; 0:09g

DGP (iv) ht = (0:10 + �01G1(t
�; 
1; c1)) + (0:10 + �11G1(t

�; 
1; c1))"
2
t�1 + 0:80ht�1

�01 = f0:10; 0:30g and �11 = f0:05; 0:09g

DGP (v) ht = 0:10 + 0:10"
2
t�1 + (0:80 + �11G1(t

�; 
1; c1))ht�1

�11 = f0:05; 0:09g

DGP (vi) ht = 0:10 + �01G1(t
�; 
1; c1) + 0:10"

2
t�1 + (0:80 + �11G1(t

�; 
1; c1))ht�1

�01 = f0:10; 0:30g and �11 = f0:05; 0:09g

DGP (vii) ht = (0:10 + 0:10"
2
t�1 + 0:85ht�1)(1 + �1G1(t

�; 
1; c1))

�1 = f0:05; 0:08g

The �rst six designs concern the additive TV-GARCH model, whereas the remaining
one relates to the multiplicative model. In all these seven experiments, the midpoint of
the change in volatility is at c1 = 0:5; whereas the slope parameter 
1 varies in the interval

1 = f5; 10g: Following the suggestion in Bollerslev (1986), recursive computation of ht is
initialized by using the estimated unconditional variance for the pre-sample values t � 0:

7.2 Finite sample properties

In this section we shall look at the small-sample properties of the modelling strategy for
the TV-GARCH model. We �rst report results on the size and power properties of our
parameter constancy tests. Then we turn to the speci�cation of TV-GARCH models.
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Size and power simulations

The size and the power results of the tests are presented graphically following the rec-
ommendation in Davidson and MacKinnon (1998). Both the ordinary and the robusti�ed
versions of each test are computed using auxiliary regressions. Results of the size simu-
lations are presented by means of p-value discrepancy plots shown in Figure 5. In these
graphs, the di¤erence between the empirical size and the nominal size is plotted against
the nominal size. The upper panel of Figure 5 presents the results for the size simulations
for the test against an additive alternative while the bottom panel shows the empirical
size results of the test against a multiplicative alternative. For each test we calculate
the actual rejection frequencies for the three sample sizes at the following nominal levels:
0.1%, 0.3%, 0.5%, 0.7%, 0.9%, 1%, ...., 10%. The series are generated from the GARCH
model given by the DGP (i) where �0 = 0:10; �1 = 0:10 and �1 = 0:85:
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Figure 5. Size discrepancy plots of the additive (upper panel) and multiplicative (lower
panel) parameter constancy tests. Both the ordinary (left) and the robust (right) versions
of the tests are plotted.

We encounter some size distortions for both tests at the sample size T = 1000; but
the results become more accurate as the sample size increases. For sample sizes typically
used for modelling volatility clustering, such as T = 2500 and T = 5000, the tests are
reasonably well-sized. Furthermore, the size distortions of the robust version of the tests
do not di¤er too much from those of the ordinary version. Our main conclusion is that both
the non-robust and robust versions of the test statistics are rather good approximations
to the �nite-sample distributions for T � 2500: Employing a robust test even when the
errors are normal does not seem to lead to a large loss of power.
Although there exist several procedures in the GARCH literature for testing parameter

constancy, none of those tests can be considered a direct benchmark for our parameter
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constancy tests. Because of this, in Figure 6 we only report power results for our tests. In
these graphs the rejection frequencies are plotted against the nominal signi�cance levels
0.1%, 0.3%, 0.5%, 0.7%, 0.9%, 1%, ...., 10%. Instead of the size-adjusted power-size
curves suggested by Davidson and MacKinnon (1998), we simply report power curves as
the tests have good size properties.
The power results in Figure 6 have been obtained by generating arti�cial data from the

DGP (ii) where the coe¢ cient �01 = 0:10; the slope parameter 
1 = 5 and the location
parameter c1 = 0:5: The rejection frequencies of the additive LM test statistics shown
in the top panel are moderate when T = 1000 and increase with the sample size. The
pattern of the power results for the robusti�ed version of the test is very similar to the
non-robust one.
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Figure 6. Power curves of the additive (upper panel) and multiplicative (lower panel)
parameter constancy tests. Both the ordinary (left) and robust (right) versions of the
tests are plotted.

Rejection frequencies for the LM-type test against a multiplicative alternative are
shown in the lower panel of Figure 6. The results refer to power simulations when the
data generating process is a multiplicative TV-GARCH model (DGP vii). The coe¢ cient
�1 = 0:05 and 
1 = 5 as before. As expected, the rejection frequencies are an increasing
function of the sample size and of the parameter �1 (as well as of the parameter �01 in the
additive case). Moreover, the LM-type test statistic turns out to be very powerful even
for short time series. Again, the behaviour of the robust version of the test in the power
simulations is quite similar to that of the non-robust version.
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Simulating the model selection strategy

In this section we consider the performance of the speci�c-to-general speci�cation
strategy for TV-GARCH models with an additive time-varying structure. This is done by
studying the selection frequencies of various models. The speci�cation procedure has been
discussed in Section 4.1. A total of 2000 replications are carried out for each DGP and
all three sample sizes. The �rst 1000 observations of each generated series are discarded
to avoid the initialization e¤ects. Throughout, we set � = 0:05 for both the LM1 and
LM3 versions of the test: The maximum number of transitions considered equals two.
Furthermore, � = 1=2; which means that we halve the signi�cance level of the test at each
stage of the sequence.
Results for DGP (i) are reported in Table 1 (see Appendix B). The frequencies for the

correct number of transitions are shown in boldface. The column labeled �choice�refers to
the number of transition functions selected. In general, the LM1 statistic has better size
properties than its LM3 variant. However, in most cases, the test based on the third-order
Taylor expansion also has an empirical size very close to the nominal size except when
the sum �1 + �1 is close to one and the sample size is less than 2500 observations.
Results for series generated from a model with a single transition function can be found

in Table 2. We report separately an additive time-varying structure in each parameter
of the GARCH model when c1 = 0:50: This corresponds to the DGP�s (ii), (iii) and
(v). For all the cases, the parameters of the linear GARCH are �0 = 0:10; �1 = 0:10
and �1 = 0:80: Clearly, one selects the constant-parameter GARCH model too often for
parameterizations with smoothest changes and smallest series. For large sample sizes, the
selection frequencies of the true model become quite large even for very smooth changes.
Again, the LM1 test has higher power than the LM3 test. As expected, the correct model
is selected more frequently when the values of the time-varying parameters �01; �11 or
�11 increase. Moreover, the correct model is selected slightly more often when the change
only occurs either in the constant �0 or in the GARCH parameter �1 than if it does in
the ARCH parameter �1:
The model selection frequencies when the series are generated from DGP (iv) are

given in Table 3. The correct model is chosen more frequently when the change in �01
and �11 becomes large. It also becomes easier to identify a single transition when the slope
parameter 
 increases. Again, the results concern the case when the change occurs in the
middle of the sample. Finally, Table 4 contains the frequencies of the selected models for
the DGP (vi). In this case, the power of our procedure turns out to be very similar to
that shown in Table 3. This may be explained by the fact that either changes in �01 and
�11 or the ones in �01 and �11 simultaneously change the amplitude of clusters as well as
the unconditional variance. We also carried out simulations for the DGP (vii) which are
not reported in the paper. The results are almost identical to what is reported for the
additive TV-GARCH model. Overall, the sequential procedure seems to work relatively
well for all combinations of parameters considered and for sample sizes T � 1000:

8 Applications

In this section we shall present two empirical examples involving two �nancial time series,
a stock index and an exchange rate return series. The former is the Standard and Poor
500 composite index (S&P 500) and the latter the spot exchange rate of the Singapore
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dollar versus the U.S. dollar (SPD/USD). Both series are observed at a daily frequency
and transformed into the continuously compounded rates of return.

8.1 Stock index series

The daily S&P 500 series was provided by the Yahoo-Quotes database. The sample
period extends from January 2, 1990, to December 31, 1999, which amounts to 2531
observations. The series is plotted in Figure 7. It contains periods of large volatility both
in the beginning and at the end of the sample period, whereas the average volatility in
the middle of the sample is somewhat lower than in both ends.
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Figure 7. Daily returns of the S&P 500 composite Index from January 2, 1990 until
December 31, 1999 (2531 observations).

Summary statistics for the series can be found in the second column of Table 5. It is
seen that there is both negative skewness and excess kurtosis in the series. Normality of the
marginal distribution of the S&P 500 returns is strongly rejected. Robust skewness and
kurtosis estimates (see Kim and White (2004) and Teräsvirta and Zhao (2007)) are also
provided. The robust skewness measure is positive but very close to zero which indicates
that the asymmetry of the empirical distribution of the returns is due to a small number
of outliers. The robust centred kurtosis (it has value zero for the normal distribution)
indicates some excess kurtosis but much less than the conventional measure. This is in
line with the robust skewness estimate. As expected, the null hypothesis of no ARCH is
strongly rejected.
We �rst estimate a standard GARCH(1,1) model to this series. Its parameter estimates

can be found in Table 6. It is seen that the sum b� + b� = 0:996; so the estimated model
is practically an integrated GARCH model. Results of the parameter constancy test
against an additive time-varying structure are reported in Table 7. The test of parameter
constancy against an additive TV-GARCH model, when all parameters are assumed to
change under the alternative, rejects the null hypothesis. The tests against alternatives
in which some parameters remain constant, suggest that the main source of nonconstancy
is the intercept.
Instead of specifying and estimating an additive TV-GARCH model with a time-

varying intercept, we test the iid hypothesis of our stochastic sequence f"tg against deter-
ministic change. This is Step 1 in the speci�cation of multiplicative TV-GARCH models
outlined in Section 4.2. The results can be found in Table 8. The null hypothesis is
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rejected very strongly as the p-value of the test equals 3 � 10�23: The test sequence for
specifying the structure of the deterministic function gt points towards K = 2: Fitting the
TV-GARCH model with a single transition function and K = 2 to the series and testing
for another transition still leads to rejecting the null hypothesis. The p-value, however, is
now considerably larger, equalling 0:0028; and the speci�cation test sequence now clearly
suggests K = 1: Accepting this outcome, �tting the corresponding TV-GARCH model
to the series and testing for yet another transition yields the p-value 0:0623: If the null
hypothesis is tested directly against a standard logistic transition function, the p-value
equals 0:0197: Given the relatively large number of observations, this is not a small value,
and the model with two transitions is tentatively accepted as the �nal model.
In this model, the estimate of gt has the following form:

bgt = f1 + 1:7041
(0:4265)

G1(t
�; b
1;bc1) + 1:7335

(0:5455)
G2(t

�; b
2;bc2)g (54)

with
G1(t

�; b
1;bc1) = (1 + expf�100
(�)
(t� � 0:1643

(0:0100)
)(t� � 0:6950

(0:0831)
)g)�1 (55)

and
G2(t

�; b
2;bc2) = (1 + expf�100
(�)
(t� � 0:8534

(0:0043)
)g)�1: (56)

The graph of the deterministic component bgt is depicted in Figure 9. The two tran-
sitions are clearly visible and illustrate how volatility �rst decreases and then increases
over time. The parameter estimates of the GARCH model to the standardized residuals
"t=bg1=2t can be found in Table 6. For illustration, Table 6 also contains the parameter
estimates at the point where the parameters in ht have been estimated for the �rst time.
It is seen that there is already a large change in the value of the log-likelihood compared
to the maximum found for the GARCH(1,1) model. The persistence, however, has not
yet decreased very much. Figure 10 contains the autocorrelations of j"tj (Panel (a)) and
those of j"tj=bg1=2t after a single iteration (Panel (b)). It is seen that the increase in the
log-likelihood is mainly due to the decrease in the general level of the autocorrelations. At
the same time they retain the �long-memory property�, the very slow decay as a function
of the lag, that characterizes the autocorrelations of j"tj:
The log-likelihood still considerably increases with further iterations, and the �nal

persistence indicator b�+ b� = 0:934; which is a remarkably low number. A clear trade-o¤
is observed here. When it is assumed that the process is stationary there is only one level
(unconditional variance) to which the conditional variance converges when it is assumed
that zt = 0 for t > t0: This convergence then takes a very long time (b� + b� is close to
unity). In the TV-GARCH model this level is time-varying, and the rate of convergence
to a particular level can thus be more rapid than it is in the standard GARCH model.
Panel (c) of Figure 10 now shows that the autocorrelations of j"tj=bg1=2t have decreased
even further, and only few of them exceed two standard deviations of j"tj; marked by the
straight line in the �gure. A major part of the variation in the daily S&P 500 return series
can thus be attributed to the slow-moving component gt, and surprisingly little remains
to be explained by the traditional GARCH component.
The estimated models are subjected to misspeci�cation tests described in Section 6.

Table 9 reports the results. The hypothesis of �no ARCH in GARCH�is not rejected for
any lag length considered. As may be expected, the hypothesis of no additional transitions
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is not rejected either. There is, however, some indication of nonlinearity in the conditional
variance as the GARCH(1,1) component is strongly rejected against a STGARCH(1,1)
one forK = 1: In order to remedy this problem, we specify a GJR-GARCH(1,1) model for
the standardized errors "t=bg1=2t : Table 10 contains the misspeci�cation test results for this
model. Even if the GJR-GARCH model is a rather crude representation of asymmetry
when compared to the smooth transition GARCH speci�cation, it manages to capture
most of the asymmetry. The p-value of the test of no additional nonlinearity, when
applied to the TV-GJR-GARCH model, equals 0.054, which is much larger than 1�10�10
obtained when the test was applied to the estimated TV-GARCH(1,1) model. Applying
the 1% signi�cance level, the other misspeci�cation tests do not reject the model either,
and the TV-GJR-GARCH model is thus accepted to be our �nal model.
Figure 11 that contains the estimated conditional standard deviations h1=2t of f"tg for

the GJR-GARCH(1,1) model and the ones of f"t=bg1=2t g illustrates the situation as well.
For the GJR-GARCH model, see Panel (a), the graph looks rather �nonstationary�. Some
of that nonstationarity remains after a single iteration, Panel (b), as the autocorrelations
of f"t=bg1=2t g after a single iteration also demonstrate. From the graph in Panel (c) (the
�nal model) it is seen that volatility is still changing over time, but there no longer seem
to be persistent level changes. They have been absorbed by the deterministic component.
Column 4 in Table 5 contains the skewness and kurtosis estimates for "t=bg1=2t : The

negative skewness remains but, as can be expected from the other results, the excess
kurtosis of the �nal "t=bg1=2t series is considerably less (2:8) than the original number (5:3):
This is another illustration of the fact that volatility to be modelled by ht in the TV-
GJR-GARCH model is much smaller than it is in the GJR-GARCH(1,1) model without
the nonstationary component. Even the robust kurtosis estimate in Table 5 shows some
decrease, but because its nonrobust value was already small, the decrease has remained
rather modest.
In Figure 12, the news impact curve of the standard GJR-GARCH(1,1) model is

compared with the news impact curve of the TV-GJR-GARCH(1,1) model. The news
impact curve of the TV-GJR-GARCH model is time-varying because it depends on gt�1:
Figure 12 contains the estimated news impact curve for the GJR-GARCH(1,1) model
and three curves for the TV-GJR-GARCH(1,1) model. The news impact curve of the
GJR-GARCH model is time-invariant, and from the �gure it is seen how it varies over
time in the TV-GJR-GARCH model. The three curves based on the latter model clearly
show the obvious fact that when there is plenty of turbulence in the market, the news
impact of a particular shock is smaller than it is when calm prevails. In the latter case,
even a minor event (shock) can be �news�, whereas in the former case, even a relatively
large shock can have a rather small news component. This distinction cannot be made in
the standard GJR-GARCH model.

8.2 Exchange rate data

The data in this application consist of daily returns of the spot exchange rate SPD/USD
provided by the Federal Reserve Bank of New York. The time series is shown in Figure
8. It covers the period from May 1, 1997 until July 11, 2005, yielding a total of 2060
observations. At �rst sight, it appears that one can distinguish two di¤erent regimes in
the data. A period of high volatility occurs during the East Asian �nancial crisis due to
the signi�cant depreciation of the Singapore dollar relative to the U.S. dollar. After the
crisis, the volatility of the currency returns descends to a low level.
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Figure 8. Daily returns of the Singapore Dollar versus US dollar exchange rate from
May 1, 1997 until July 11, 2005 (2060 observations).

Descriptive statistics for the SPD/USD exchange rate returns are reported in Table 5.
There is plenty of excess kurtosis, and the estimated skewness is strongly negative. Both
of these �gures are due to a limited number of negative returns early in the series during
the so-called Asian crisis. Naturally, the marginal distribution of the returns is far from
normal. The robust measure of skewness indicates that there is in fact little skewness
and the robust centred kurtosis is substantially smaller than its standard measure. The
hypothesis of no ARCH is strongly rejected, as can be expected. The GARCH(1,1) model
�tted to this exchange rate return series again shows high persistence of volatility. The
estimate of �1 is larger and that of �1 smaller than in the S&P 500 model, which is a
consequence of the fact that the kurtosis is larger in the exchange rate series than it is in
the S&P 500 returns.
Parameter constancy of the GARCH(1,1) model is rejected against an additive TV-

GARCH model. These test results are presented in Table 7. In this case, however, the
rejection is not due to the intercept but rather to the other two parameters. As in the
previous application, we shall not �t any additive TV-GARCH model but choose to work
with the multiplicative model. The test of constant unconditional variance against a time-
varying one has the p-value equal to 1�10�20: Table 8 gives the outcomes of the sequence
of tests. The speci�cation test sequence indicates that one should choose K = 1; that
is, have a monotonically increasing transition function. A multiplicative TV-GARCH
model with a single transition appears adequate in the sense that the test for another
transition has the p-value equal to 0:14: The diagnostic tests of this model in Table 9 are
all insigni�cant. There is no remaining ARCH in the standardized errors, no evidence of
higher-order structure in the GARCH component, and nothing suggests the existence of
additional transitions. Finally, the linearity test against smooth transition GARCH does
not indicate remaining nonlinearity. Judging from these statistics the model seems to be
adequately speci�ed. It is thus tentatively accepted as our �nal model for the SPD/USD
daily return series.
The �nal results for the function gt are as follows:

bgt = f1� 0:7890
(0:0074)

G1(t
�; b
1;bc1)g; (57)

where
G1(t

�; b
1;bc1) = (1 + expf�100
(�)
(t� � 0:2101

(0:0014)
)g)�1 (58)
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The graph of the transition function can be found in Figure 13. As the data suggest,
the volatility is high in the beginning and settles down to a lower level after about 500
observations (two years). From Table 5 it is seen that the excess kurtosis has decreased
substantially from its value for f"tg and, furthermore, that the skewness has been re-
duced from �0:9 to less than �0:3: This large reduction can be ascribed to the fact
that the original skewness was due to a couple of very large negative returns during the
Asian crisis. Their signi�cance has subsequently been reduced in f"t=bg1=2t g where the
conditional heteroskedasticity component has been standardized by the underlying non-
stationary volatility component. Besides, according to the robust estimates the skewness
has not been a¤ected, which accords with this conclusion as well.
The parameter estimates of the model appear in Table 6. It can be seen that even

for the exchange rate series, the �rst iteration already has a large e¤ect on the value of
the log-likelihood. Figure 14 shows that at that stage, the autocorrelations of j"tj=bg1=2t
are considerably lower than those of j"tj; although their decay as a function of the lag
length is still slow. The �nal estimates indicate more persistence than there is in the S&P
500 case, but the decrease is still large compared to the GARCH(1,1) model. The decay
rate of the autocorrelations of j"tj=bg1=2t in Figure 14 is quite rapid and looks more or less
exponential. The �rst-order autocorrelation that was about 0.304 for j"tj equals 0.121
for j"tj=bg1=2t : The graphs of the conditional variance ht in Panel (a) of Figure 15 clearly
show the period of high volatility , which is the cause of the high persistence suggested
by the GARCH(1,1) model. Panel (c) shows that in the �nal model this high-volatility
period is explained by the deterministic component gt; and that the graph of ht does not
show signs of nonstationarity. This is precisely what one would expect after looking at
the parameter estimates in Table 6.

9 Concluding remarks

In this paper we introduce two new nonstationary GARCH models whose parameters are
allowed to have a smoothly time-varying structure. Time-variation of the (un)conditional
variance is incorporated in the model either in an additive or a multiplicative form. This
approach seems to be very appealing since most �nancial time series cover a long time
period and non-constancy of parameters therefore appears quite likely. We also develop a
modelling strategy for our TV-GARCH speci�cations. In order to determine the appro-
priate number of transitions we propose a procedure consisting of a sequence of Lagrange
multiplier tests. The test statistics can be robusti�ed against deviations from the iid as-
sumption. Our simulation experiments suggest that the parameter constancy tests have
reasonable good properties already in samples of moderate size. The modelling strategy
appears to work quite well for the data-generating processes that we simulate.
We put our TV-GARCH models to test by applying the modelling strategy to daily

stock index and exchange rate returns. We �nd that parameter constancy against an
additive and a multiplicative structure is strongly rejected for both return series. Fitting
a traditional GARCH model to these series yields results that are quite di¤erent from
the ones obtained by our approach and suggest the presence of long memory in volatility.
Our results show that the long memory type behaviour of the sample autocorrelation
functions of the absolute returns may also be induced by changes in the unconditional
variance. Once the model accounts for the time-variation in the baseline volatility or
unconditional variance, the evidence for long memory is weakened in both occasions.
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An extension to multivariate GARCHmodels appears possible. The so-called Constant
Conditional Correlation (CCC-) GARCH model by Bollerslev (1990) and its extensions
typically make use of a standard GARCH(1,1) speci�cation for conditional variances.
These GARCH equations could be generalized to account for time-variation in parameters.
An interesting question to investigate is how such a generalization would a¤ect correlation
estimates in a situation in which there are simultaneous changes in the unconditional
variance of the return series included in either the basic CCC-GARCH model or its more
general variants. This and other extensions to multivariate models will be left for future
work.
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Appendix A

Proof of Theorem 1. Assuming the innovations to be normally distributed, it follows
that for model (11) the conditional log-likelihood function for observation t is given by

`t(�) = �
1

2
ln 2� � 1

2
lnht �

1

2

"2t
ht
:

Let � be a parameter vector partitioned as � = (�01;�
0
2)
0; such that �2 = 0: The corre-

sponding partition of the average score vector q(T )(�) is then q(T )(�) = (q(T )(�1)0;q(T )(�2)0)0

so that q(T )(�̂1) = 0 from constrained maximum likelihood. Let h0t denote the conditional
variance under the null and let the true parameter vector under H0 be �0 = (�001 ;�

00
2 )
0:

The Lagrange multiplier statistic is de�ned as

�LM = Tq(T )(�̂0)
0I(�̂0)

�1q(T )(�̂0)

where T is the sample size, q(T )(�̂0) is the average score vector and I(�̂) is the informa-
tion matrix under the null hypothesis evaluated at the constrained maximum likelihood
estimate �̂ of �0: The partial derivatives with respect to the � parameter vector are
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where x̂t = (x̂01t; x̂
0
2t)

0 denotes the vector xt = (x01t;x
0
2t)

0 evaluated at � = �̂: Under nor-
mality, the information matrix equals the negative expected value of the average Hessian
matrix
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When �̂ is consistent for �0; it is consistently estimated as follows:
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Then, the Lagrange multiplier type test statistic for testing parameter constancy has the
standard form:

�LM =
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t

!�1 TX
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ûtx̂
0
t

where ût = "2t=ĥ
0
t � 1: This implies that the general form of the LM statistic for testing

H0 : �2 = 0 can be written as
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Under H0; the statistic has an asymptotic �2�distribution with dim (�2) degrees of free-
dom.
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Appendix B

Table 1. Model selection frequencies based on the additive sequential procedure

Number of T = 1000 T = 2500 T = 5000

�1 �1 transitions LM1 LM3 LM1 LM3 LM1 LM3

DGP (i): GARCH model with �0 = 0:10

0:10 0:80 r = 0 95.45 94.15 95.00 95.35 95.50 94.35
r = 1 3.36 4.10 3.90 3.05 3.30 3.90
r � 2 1.20 1.75 1.10 1.60 1.20 1.75

0:10 0:85 r = 0 94.70 91.90 94.30 94.10 95.10 93.70
r = 1 3.65 5.20 4.60 3.90 3.40 4.45
r � 2 1.65 2.90 1.05 2.00 1.50 1.85

0:05 0:90 r = 0 94.45 90.45 94.20 93.75 94.40 93.25
r = 1 4.00 6.35 4.50 4.20 4.00 4.40
r � 2 1.55 3.20 1.30 2.05 1.60 2.35

0:09 0:90 r = 0 90.45 76.95 92.80 88.10 94.30 90.85
r = 1 8.20 14.10 4.95 7.10 4.10 5.50
r � 2 1.35 8.95 2.25 4.80 1.60 3.65

Notes: Selection frequencies in percentage of the standard LM parameter constancy test based
on 2000 replications. The initial nominal signi�cance level equals 5%. The columns �LM1�
and �LM3� correspond to the test procedure based on the �rst-order and third-order Taylor
expansions, respectively.
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Table 2. Model selection frequencies based on the additive sequential procedure

Number of T = 1000 T = 2500 T = 5000

Parameters transitions LM1 LM3 LM1 LM3 LM1 LM3

DGP (ii): Change only in the constant
�01=0:10 
1=5 r = 0 64.75 72.65 31.75 50.55 6.70 19.25

r = 1 33.25 24.00 65.80 46.95 91.45 78.10
r � 2 2.00 3.35 2.45 2.50 1.85 3.65


1=10 r = 0 46.50 58.10 9.45 21.90 0.20 1.20
r = 1 51.35 37.35 88.35 75.75 97.45 96.65
r � 2 2.15 4.55 2.20 2.35 2.35 2.15

�01=0:30 
1=5 r = 0 17.90 33.55 0.25 2.85 0.00 0.00
r = 1 78.35 60.90 97.15 93.75 97.35 96.75
r � 2 3.75 5.55 2.60 3.40 2.65 3.25


1=10 r = 0 5.75 11.15 0.00 0.00 0.00 0.00
r = 1 90.45 82.00 98.05 96.70 97.15 96.25
r � 2 3.80 6.85 1.95 3.30 2.85 3.75

DGP (iii): Change only in the ARCH component
�11=0:05 
1=5 r = 0 80.25 84.55 55.80 69.65 22.65 41.30

r = 1 18.70 13.40 42.70 28.95 75.15 56.45
r � 2 1.05 2.05 1.50 1.40 2.20 2.25


1=10 r = 0 68.10 76.35 29.05 47.00 3.65 10.80
r = 1 30.20 21.60 68.85 51.00 93.55 86.95
r � 2 1.70 2.05 2.10 2.00 2.80 2.25

�11=0:09 
1=5 r = 0 50.30 62.05 7.75 22.20 0.00 1.10
r = 1 46.95 34.40 89.20 74.95 96.35 95.80
r � 2 2.75 3.55 3.05 2.85 3.65 3.10


1=10 r = 0 27.80 38.65 0.95 3.05 0.00 0.00
r = 1 68.95 56.90 95.70 94.70 96.85 96.80
r � 2 3.35 4.45 3.35 2.25 3.15 3.20

DGP (v): Change only in the GARCH component
�11=0:05 
1=5 r = 0 68.40 76.50 30.60 50.80 5.00 14.90

r = 1 30.00 21.10 67.40 47.05 93.30 83.05
r � 2 1.60 2.40 2.00 2.15 1.70 2.05


1=10 r = 0 50.15 62.30 8.35 21.20 0.10 0.70
r = 1 47.90 34.90 89.55 76.50 97.35 97.25
r � 2 1.95 2.80 2.30 2.30 2.55 2.05

�11=0:09 
1=5 r = 0 18.75 30.10 0.00 1.80 0.00 0.00
r = 1 77.75 64.90 95.95 94.85 96.35 96.65
r � 2 3.50 5.00 4.05 3.35 3.65 3.35


1=10 r = 0 9.80 11.25 0.00 0.00 0.00 0.00
r = 1 85.90 81.70 96.60 96.20 97.05 96.00
r � 2 4.30 7.05 3.40 3.80 1.95 4.00

Notes: Selection frequencies in percentage of the standard LM parameter constancy test based
on 2000 replications. The initial nominal signi�cance level equals 5%. The columns �LM1�
and �LM3� correspond to the test procedure based on the �rst-order and third-order Taylor
expansions, respectively.
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Table 3. Model selection frequencies based on the additive sequential procedure

Number of T = 1000 T = 2500 T = 5000

�01 �11 
1 transitions LM1 LM3 LM1 LM3 LM1 LM3

DGP (iv): Change in the intercept and ARCH component

0.10 0.05 5 r = 0 24.55 41.40 0.75 3.80 0.00 0.00
r = 1 72.75 55.05 96.70 93.85 97.65 97.50
r � 2 2.70 3.55 2.55 2.35 2.35 2.50

10 r = 0 7.80 17.05 0.00 0.05 0.00 0.00
r = 1 88.80 79.45 97.80 97.65 97.35 97.40
r � 2 3.40 3.50 2.20 2.30 2.65 2.60

0.10 0.09 5 r = 0 11.80 25.50 0.00 0.80 0.00 0.00
r = 1 84.35 69.45 96.90 95.85 96.35 96.20
r � 2 3.85 5.05 3.10 3.35 3.65 3.80

10 r = 0 3.25 7.45 0.00 0.00 0.00 0.00
r = 1 91.95 87.25 96.90 96.90 96.40 97.10
r � 2 4.80 5.30 3.10 3.10 3.60 2.90

0.30 0.05 5 r = 0 2.30 8.80 0.00 0.00 0.00 0.00
r = 1 93.20 86.35 97.35 97.40 97.05 96.90
r � 2 4.50 4.85 2.65 2.60 2.95 3.10

10 r = 0 0.95 0.90 0.00 0.00 0.00 0.00
r = 1 94.95 93.65 96.95 97.15 97.15 97.20
r � 2 4.10 5.45 3.05 0.50 2.85 2.80

0.30 0.09 5 r = 0 1.65 5.80 0.00 0.00 0.00 0.00
r = 1 92.40 86.65 96.60 96.25 96.60 96.60
r � 2 5.95 7.55 3.40 3.75 3.40 3.40

10 r = 0 0.55 0.45 0.00 0.00 0.00 0.00
r = 1 92.40 91.30 96.05 95.50 95.80 95.70
r � 2 7.05 8.25 3.95 4.50 4.20 4.30

Notes: Selection frequencies in percentage of the standard LM parameter constancy test based
on 2000 replications. The initial nominal signi�cance level equals 5%. The columns �LM1�
and �LM3� correspond to the test procedure based on the �rst-order and third-order Taylor
expansions, respectively.
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Table 4. Model selection frequencies based on the additive sequential procedure

Number of T = 1000 T = 2500 T = 5000

�01 �11 
1 transitions LM1 LM3 LM1 LM3 LM1 LM3

DGP (vi): Change in the intercept and GARCH component

0.10 0.05 5 r = 0 12.45 27.20 0.00 0.70 0.00 0.00
r = 1 84.85 69.55 97.30 96.60 97.60 97.25
r � 2 2.70 3.25 2.70 2.70 2.40 2.75

10 r = 0 4.50 8.45 0.00 0.00 0.00 0.00
r = 1 92.50 87.85 97.75 97.50 97.05 97.30
r � 2 3.00 3.70 2.25 2.50 2.95 2.70

0.10 0.09 5 r = 0 2.95 7.45 0.00 0.00 0.00 0.00
r = 1 91.70 86.35 95.65 95.55 96.50 96.50
r � 2 5.35 6.20 4.35 4.45 3.50 3.50

10 r = 0 3.20 1.55 0.00 0.00 0.00 0.00
r = 1 90.90 89.85 95.40 93.90 96.15 95.15
r � 2 5.90 8.60 4.60 6.10 3.85 4.85

0.30 0.05 5 r = 0 1.25 4.35 0.00 0.00 0.00 0.00
r = 1 94.65 90.00 96.70 96.50 97.25 97.15
r � 2 4.10 5.65 3.30 3.50 2.75 2.85

10 r = 0 1.15 0.55 0.00 0.00 0.00 0.00
r = 1 95.05 95.00 96.80 96.20 97.20 96.50
r � 2 3.80 4.45 3.20 3.80 2.80 3.50

0.30 0.09 5 r = 0 0.60 1.70 0.00 0.00 0.00 0.00
r = 1 91.70 89.10 95.35 94.15 96.10 95.95
r � 2 7.70 9.20 4.65 5.85 3.90 4.05

10 r = 0 1.25 0.20 0.00 0.00 0.00 0.00
r = 1 91.60 88.00 94.60 91.35 94.30 92.70
r � 2 7.15 11.80 5.40 8.65 5.70 7.30

Notes: Selection frequencies in percentage of the standard LM parameter constancy test based
on 2000 replications. The initial nominal signi�cance level equals 5%. The columns �LM1�
and �LM3� correspond to the test procedure based on the �rst-order and third-order Taylor
expansions, respectively.
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Table 5. Descriptive statistics and diagnostics for the daily returns

S&P 500 returns SPD/USD returns

S&P 500 "t=ĝ
1=2
t "t=(ĥtĝt)

1=2 SPD/USD "t=ĝ
1=2
t "t=(ĥtĝt)

1=2

Minimum �0:0711 �0:0433 �6:3438 �0:0414 �0:0190 �6:0724

Maximum 0:0499 0:0304 4:0701 0:0276 0:0142 4:0671

Skewness �0:3678 �0:3361 �0:3804 �0:9045 �0:2839 �0:2424

Robust SK 0:0325 0:0318 0:0221 �0:0045 �0:0165 �0:0217

Ex.kurtosis 5:2867 2:7996 2:2072 14:593 3:2055 2:1941

Robust KR 0:2541 0:1737 0:1465 0:1662 0:1120 0:1030

Std. dev. 0:0089 0:0061 0:9982 0:0041 0:0029 0:9971

Mean 0:0005 0:0004 0:0625 8� 10�5 4� 10�5 0:0142

LJB 3004:53
(0:0000)

874:21
(0:0000)

574:82
(0:0000)

18558:57
(0:0000)

909:62
(0:0000)

433:38
(0:0000)

ARCH(4) 154:19
(3�10�32)

55:340
(3�10�11)

4:065
(0:3973)

339:69
(3�10�72)

108:07
(2�10�22)

5:111
(0:2761)

T 2531 2531 2531 2060 2060 2060

Notes: LJB denotes the Lomnicki-Jarque-Bera test. ARCH(4) is the fourth-order ARCH LM
test statistic described in Engle (1982). Robust SK denotes the robust measure for skewness
based on quantiles proposed by Bowley (see Kim and White (2004)) and the robust KR denotes
the robust centred coe¢ cient for kurtosis proposed by Moors (see Kim and White (2004)). The
numbers in parentheses are p-values.
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Figure 9. Graph of the �nal estimated function gt for the S&P 500 returns model as a
smooth function of the rescaled time variable t� as given in (54)-(56).
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(a) S&P 500 returns
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(b) 1st iteration

10 20 30 40 50 60 70 80 90 100

0.0

0.1

0.2

0.3

0.4

0.5

(c) 23rd iteration

Figure 10. Sample autocorrelations of absolute log returns of the S&P 500 returns and
the standardized variable j"tj=ĝ1=2tS&P500 for the �rst and the �nal iterations with the 95%
con�dence bounds.
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(a) S&P 500 returns
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Figure 11. Conditional standard deviation of the GJR-GARCH(1,1) model for the S&P
500 returns and the standardized variable "t=ĝ

1=2
tS&P500

for the �rst and the �nal iterations.
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Figure 12. News impact curves of the GJR-GARCH(1,1) (solid line in boldface) and
the TV-GJR-GARCH(1,1) models for several regimes. The time-varying news impact
curves are plotted for the lower regime, i.e. G1(t�) = G2(t

�) = 0 (dotted line), for an
intermediate regime, i.e. G1(t

�) = 1 and G2(t�) = 0 (dashed line) and for the higher
regime, i.e. G1(t�) = G2(t

�) = 1) (solid line).
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Figure 13. Graph of the �nal estimated function gt for the SPD/USD returns model as
a smooth function of the rescaled time variable t� as given in (57)-(58).
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(c) 41st iteration

Figure 14. Sample autocorrelations of absolute log returns of the SPD/USD returns and
for the standardized variable j"tj=ĝ1=2tSPD=USD for the �rst and the �nal iterations with the
95% con�dence bounds.
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Figure 15. Conditional standard deviation of the GARCH(1,1) model for the SPD/USD
returns and for the standardized variable "t=ĝ

1=2
tSPD=USD

for the �rst and the �nal iterations.
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