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Abstract

This paper studies the impact of hospital competition on waiting times. We use a Salop-type model, with hospitals that differ in
(geographical) location and, potentially, waiting time, and two types of patients: high-benefit patients who choose between neighbouring
hospitals (competitive segment), and low-benefit patients who decide whether or not to demand treatment from the closest hospital
(monopoly segment). Compared with a benchmark case of monopoly, we find that hospital competition leads to longer waiting times in
equilibrium if the competitive segment is sufficiently large. Given a policy regime of hospital competition, the effect of increased
competition depends on the parameter of measurement: Lower travelling costs increase waiting times, higher hospital density reduces
waiting times, while the effect of a larger competitive segment is ambiguous. We also show that, if the competitive segment is large,
hospital competition is socially preferable to monopoly only if the (regulated) treatment price is sufficiently high.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Waiting times are a major health policy concern in many OECD countries. Mean waiting times for non-emergency
care are above three months in several countries and maximum waiting times can stretch into years. Policymakers often
argue that more competition and patient choice can reduce waiting times by encouraging hospitals to compete for
patients and revenues (Siciliani and Hurst, 2004, 2005).1 The mechanisms of how this may work are, however, not very
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1 There are many examples. Norway introduced activity-based funding (DRG-pricing) in 1997 and nation-wide patient choice of hospital in 2001. Both
reforms aimed at stimulating competition and reducingwaiting times. In the UnitedKingdom, the policy Payment byResults has been recently introduced,
which remunerates hospitals according to a fixed tariff per patient treated. One of the objectives of the policy is to induce hospitals to compete for resources
by reducing waiting times. In Denmark patients have had free choice of treatment in any publicly-funded hospital within the county of residence since
1993. In Sweden since 2002 all county councils have introduced free choice among public providers within and between counties.
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clear. Why would hospitals that operate at full capacity and face excessive demand have an incentive to compete for
even more patients? The main purpose of this paper is to contribute to the understanding of the relationship between
competition and waiting times in hospital markets.

We develop a model of hospital competition within a Salop framework, where hospitals differ in terms of
(geographical) location and, possibly, waiting times. We assume that there are two types of patients who differ in
expected benefit (“high” and “low”) from hospital treatment. Hospitals compete on the segment of demand with high
benefit, while they are local monopolists on the demand segment with low benefit. By comparing with a benchmark
case of monopoly, we analyse how the introduction of competition in the hospital market affects waiting time and
activity in equilibrium. Given a policy regime of hospital competition, we also examine the effects of increasing the
degree of competition, based on three different measures: (i) patients' travelling costs, (ii) the size of the competitive
relative to the monopolistic demand segment, and (iii) hospital density (the number of hospitals). We also derive the
socially optimal waiting time and assess the welfare implications of hospital competition.

Most of the existing literature assumes that hospitals are local monopolists (Lindsay and Feigenbaum, 1984;
Iversen, 1993, 1997; Martin and Smith, 1999; Olivella, 2002; Barros and Olivella, 2005; see Cullis et al., 2000, for a
review of the literature). Two exceptions are Xavier (2003) and Siciliani (2005) who model competition within a
Hotelling framework and in a duopoly model with differentiated products, respectively.2 In these models, competition
takes the form of duopoly, with the degree of competition being measured by the substitutability between treatments at
the two hospitals, and both find that increased competition (or increased patient choice) leads to longerwaiting times in
equilibrium.

An arguable limitation of both these studies is that the analysis of a potential competition effect is confined to a
single competition measure that leaves considerable room for interpretation. Furthermore, the lack of a welfare analysis
leaves the more fundamental question of whether hospital competition is desirable in the first place, unanswered.

In the present paper, we complement and extend these studies in several different ways. First, we isolate a pure
competition effect by considering monopoly versus competition, something which has not been done in the previous
literature on hospital competition and waiting times. Second, the richness of our model allows us to use several
different measures of the degree of hospital competition, something that turns out to have a crucial impact with respect
to both waiting times and activity levels. Third, we include a welfare analysis where we derive and characterise both the
socially optimal waiting time and the optimal treatment price, and analyse under which circumstances hospital
competition is socially desirable in a public hospital market. We also deviate from the above mentioned studies by
explicitly modelling semi-altruistic health care providers.

We find that introducing competition, by allowing previous local monopolies to compete for patients (equivalently,
to introduce free patient choice), leads to an increase in equilibrium waiting times (with a corresponding reduction in
hospital activity) only if the competitive demand segment is sufficiently large relative to the monopoly segment, and
vice versa.3 Thus, we obtain the previously derived result in the literature as a special case: when the competitive
segment tends to one then competition always increases waiting times. Also, given a competition regime, we find that
increasing the degree of competition has ambiguous effects on waiting times, depending on the measure of
competition. Lower travelling costs for patients increase waiting times, which replicates the result derived by Xavier
(2003). In addition, we find that a larger competitive segment has an indeterminate effect, while higher hospital density
reduces waiting times.

Furthermore, the relationship between competition and hospital activity is often counter-intuitive. For example,
lower travelling costs, which – all else equal – increase demand for hospital treatment, lead in equilibrium to lower
hospital activity due to the corresponding increase in waiting time. Similarly, higher hospital density, which – all else
equal – reduces demand per hospital, leads in equilibrium to higher per hospital activity due to the corresponding
reduction in waiting time.
2 Another related paper is Dawson et al. (2007) who analyse the impact of introducing patient choice on hospital waiting times. They find that the
effect of choice on waiting times depends on the demand elasticities. Their model is, however, very different from ours, as they focus solely on the
demand-side, assuming the supply-side to be completely exogenous. Thus, hospital competition is not an issue in their paper at all.
3 The impact of patient choice on hospital waiting times has received surprisingly little empirical attention. Two notable exceptions are: Dawson

et al. (2007) who analyse the impact of the London Patient Choice Project, finding that the project led to shorter (and converging) average waiting
times in the London region; Siciliani and Martin (2007) who provide empirical evidence supporting a negative relationship between hospital density
and waiting times, for a given level of need.
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Regarding social welfare, we show that, if the competitive demand segment is relatively large, hospital competition
is socially desirable only if the (regulated) price per treatment is sufficiently high. For a small competitive demand
segment, the result is reversed; in this case, competition is desirable only if the treatment price is sufficiently low.

However, the socially optimal waiting time is attainable through optimal price setting, regardless of market regime.
We also characterise the socially optimal treatment price and show that whether high-powered incentive schemes
substitute or complement competition depends on the measure of competition. Unless the opportunity cost of public
funds or altruism is very high, stronger competition through higher hospital density increases the optimal treatment
price, while increased competition through lower travelling costs reduces optimal prices.

The rest of the paper is organised as follows. The model is presented in Section 2, while, in Section 3, we derive and
characterise the equilibrium waiting time. The effects on waiting time and hospital activity of, first, introducing
competition, and, second, increasing the degree of competition, are analysed in Section 4. In Section 5 we derive and
characterise both the socially optimal waiting time and the optimal treatment price, and we assess the social desirability
of introducing competition in a public hospital market. In Section 6 we extend the analysis in two ways: first, we
introduce a copayment; second, we allow for inequality aversion. Finally, Section 7 concludes the paper.

2. Model

The basic model builds on the original formulation of rationing by waiting time of Lindsay and Feigenbaum
(1984).4 The main assumptions are that (i) patients differ in gross valuation of (inherent benefit from) medical
treatment (due to, e.g., age, gender, illness severity, opportunity costs); (ii) delay of treatment due to waiting time
reduces patients' benefit; and (iii) patients face costs related to obtaining treatment, including any costs related to
examinations, referrals and, importantly, travelling. All patients with a non-negative net benefit from medical treatment
demand care by joining the waiting list. A higher waiting time lowers patients' benefit, inducing patients with a low
valuation (e.g., old patients or patients with mild conditions) to renounce medical treatment.5,6

To analyse the impact of competition on waiting times, we need to extend the basic model to more than one single
provider. As a consequence, patients are not just deciding whether or not to demand medical treatment, but also which
provider to demand treatment from. Using the framework of Salop (1979), we consider a market for elective hospital
treatment where n hospitals are equidistantly located on a circle with circumference equal to 1. In this market there are
two patient types – L and H – differing with respect to the gross valuation of treatment. Both types are uniformly
distributed on the circle. A patient demands either one treatment from the most preferred hospital, or no treatment at all.
The utility of an H-type patient who is located at x and seeking treatment at hospital i, located at zi, is given by7

UH x; zið Þ ¼ V � kwi � tjx� zij; ð1Þ
where V is the gross valuation of (instant) medical treatment for the H-type patient, wi is the waiting time at hospital i, k
is a parameter measuring the (marginal) disutility of delay of treatment, and t is a travelling cost parameter.8
4 See also the theory section in Martin and Smith (1999) and Farnworth (2003).
5 Lindsay and Feigenbaum (1984) provide empirical evidence showing that higher waiting time ration demand. This is later confirmed by more

robust empirical studies by Martin and Smith (1999) and Martin et al. (2007) who show, after controlling for the supply of private beds, that demand
for hospital treatment is (weakly) elastic to waiting time.
6 The presence of private hospitals or clinics offering instant treatment might be an additional reason for waiting time to have a rationing effect on

demand as rich patients might opt for the private alternative. A brief analysis of this aspect can be found in Brekke et al. (2007). Besley et al. (1999)
provide empirical evidence showing that higher waiting times increase demand for private health insurance in the UK.
7 In Lindsay and Feigenbaum (1984) the benefit from a treatment received after a wait of w has a present value of v ∙e− rw, where the gross

valuation v varies across patients. The extension of their model to n hospitals, forces us to use a linear discount function rather than an exponential
one. This assumption makes the model more simple without qualitatively affecting the results. As pointed out by Gravelle and Siciliani (2008),
empirical evidence suggests that many individuals do not use exponential discounting of health, but instead use a variety of discounting functions,
including hyperbolic discounting. Thus, linear discounting might in many cases be a good approximation.
8 To make the analysis feasible and focused, we ignore hospital quality of care as a variable. As pointed out by an anonymous referee, there are

clear parallels between waiting times and more generally quality of care, as waiting times can be interpreted as a negative form of hospital quality.
However, there are also important differences, the main difference being that while increasing quality for the provider is costly, reducing waiting
times is not. More precisely, increasing quality increases costs directly and also indirectly through a higher demand. In contrast, reducing waiting
times increases demand only.
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Equivalently, the utility of a L-type patient who is located at x and seeking treatment at hospital i, located at zi, is
given by

UL x; zið Þ ¼ υ� kwi � tjx� zij; ð2Þ
where VNυ. Difference in gross valuations across patients can be due to difference in age, gender, illness severity, or
simply opportunity costs. For example, old patients with a non-severe condition might have a low valuation of medical
treatment.

Travel costs are interpreted broadly and include all costs associated with being far from “home”, not just the
patients' travelling expenditures. For example, choosing a distant hospital may involve rather high travel and
accommodation costs for family and relatives. In addition, distance might also involve non-pecuniary costs to patients
due to, for instance, the possibility of less (or no) visits or simply discomfort of being far from home. Finally, for
patients living in rural areas, travelling distances might actually be quite long, implying rather high travel
expenditures.9

The parameter k measures the marginal disutility of waiting (∂U/∂wi=−k), and can be thought of reflecting, for
instance, illness severity. A high k implies a serious utility loss associated with delay of treatment. Without loss of
generality, we normalise the marginal disutility to one, i.e., k=1. This implies that we can interpret t as the marginal
disutility of travelling relative to waiting. Thus, a low tmeans that delay in treatment is of relatively more importance to
the patient than travelling distance (both measured as disutility in monetary terms).10

We concentrate on cases where the H-segment is always covered, while the L-segment is only partially covered.
This implies that patients with a high gross valuation (H-types) decide which hospital to demand treatment from, while
patients with a low gross valuation (L-types) decide whether or not to join the waiting list of the closest hospital. That
is, some L-patients will not seek treatment in equilibrium, as in Lindsay and Feigenbaum (1984). We assume that the H-
segment constitutes a share λ of the total number of patients, which is normalised to 1.

Since the distance between hospitals is equal to 1/n, the H-patient who is indifferent between seeking treatment at
hospital i and hospital j is located at xi

H, given by

V � txHi � wi ¼ V � t
1
n
� xHi

� �
� wj;

yielding

xHi ¼ 1
2t

wj � wi þ t
n

� �
: ð3Þ

Total demand for hospital i from the H-segment is given by Xi
H=2xi

H.
L-patients seek treatment only at the nearest hospital, if at all. The L-patient who is indifferent between treatment at

hospital i and no treatment is located at xi
L, given by

υ� txLi � wi ¼ 0;

yielding

xLi ¼ υ� wi

t
: ð4Þ

Total demand for hospital i from the L-segment is given by Xi
L=2xi

L. A necessary assumption for waiting time to
have a rationing effect on demand is that the L-segment is not fully covered, i.e., xi

Lb1 / n, which is the case if and only
if tN (υ−wi) / n. We will later derive the conditions for this assumption to hold in equilibrium.
9 There is strong empirical evidence showing that distance is a major predictor of patients' choice of hospital, see, e.g., Kessler and McClellan
(2000) and Tay (2003).
10 A recent paper by Monstad et al. (2006) measures the marginal substitution rate between waiting time and distance for hip replacements in
Norway. They find that patients are not willing to travel far in order to obtain quicker treatment. In light of our model, this suggests that t is quite
high.
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Total demand facing hospital i from both segments is thus given by

XD
i ¼ kXH

i þ 1� kð ÞX L
i ¼ 2 1� kð Þυ� wi 2� kð Þ þ kwi

t
þ k
n
; ð5Þ

where λ ∈ (0, 1). Notice that XD
i a

k
n ;

1
n

� �
, while total demand is given by XD≔∑n

i=1Xi
D ∈ (λ, 1). To gain a better

understanding of the mechanisms of the model, it is useful to see how demand reacts to changes in waiting times at the
hospital level. From Eq. (5) we see that

AXD
i

Awi
¼ � 2� k

t
b 0: ð6Þ

Notice that lower travelling costs makes it less costly for patients to demand treatment, or to switch between
hospitals; this increases the demand responsiveness to changes in waiting times. However, since the demand loss due to
increased waiting time is larger in the L-segment, a larger competitive segment (i.e., an increase in λ) will reduce the
demand responsiveness to changes in waiting times.

Hospitals are prospectively financed by a public payer offering a lump-sum transfer T and a per-treatment price p.
The objective function of hospital i is assumed to be given by

pi ¼ T þ pX S
i þ aBi wi;wj

� �� C XS
i

� �� F; ð7Þ
where Xi

S is the supply of hospital treatments. Apart from fixed hospital costs, F, the cost of supplying hospital
treatments is given by an increasing and strictly convex cost function C(·). The convexity of the cost function captures
an important feature in the context of waiting times, namely that hospitals face some capacity constraints.11 The
function Bi(·) gives the benefit of the patients from receiving treatment at hospital i, while the parameter α ∈ [0, 1]
captures the degree of altruism of the provider.12 More explicitly, the surplus to patients treated at hospital i is given by

Bi wi;wj

� � ¼ 2k
Z 1

2t
wj � wi þ t

n

� �

0
V � wi � txð Þdx

þ2 1� kð Þ
Z v� wi

t
0

v� wi � txð Þdx;
ð8Þ

where the first term is the surplus to H-type patients, and the second term is the surplus to the L-type patients.
Differentiating Eq. (8), we obtain

ABi wi;wj

� �
Awi

¼ � XD
i � k

t
V � wi þ wj

2
� t
2n

� �
b 0: ð9Þ

A marginal reduction in the waiting time of hospital i has two effects. First, it reduces the waiting time, and thus
increases utility, for all existing patients at hospital i. This is represented by the first term in Eq. (9). Second, it increases
demand for treatment at hospital i. At the margin, the increased demand from the L-segment represents a zero utility
contribution. However, in the H-segment, there is an inflow of patients with a strictly positive net utility of hospital
treatment. This is represented by the second term in Eq. (9). Obviously, the magnitude of this second effect depends on
the size of the competitive segment, λ. Notice also that patient surplus at hospital i is a convex function of wi (implying
that the altruistic disutility of waiting (−αBi) is concave in wi).

13
11 A convex variable cost function is supported by evidence suggesting that economies of scale are quite rapidly exhausted in the hospital sector
(see, e.g., Ferguson et al., 1999; Folland et al., 2004, for literature surveys).
12 This formulation is consistent with Ellis and McGuire (1986), Chalkley and Malcomson (1998) and Jack (2005). It is also general. The special
case of a profit-maximiser hospital can be obtained by setting α =0.
13 From Eq. (9) we derive

A2Bi wi ;wjð Þ
Aw2

i
¼ 4�k

2t N 0.
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3. Equilibrium waiting times

In deriving the equilibrium, we assume, as is commonly done, that waiting time acts as a re-equilibrating mechanism
between demand and supply, i.e., XD(wi, wj)=X

S.14 This implies that it is equivalent whether we maximise the hospital
objective function with respect to supply or waiting time. For analytical purposes, we use the latter approach.

Thus, the hospitals simultaneously and independently choose announced waiting times, in order to maximise their
objective functions. We assume that the hospitals are not able/allowed to discriminate between different patient types
with respect to waiting times. We also assume that hospitals cannot turn down patients seeking treatment. This latter
assumption implies that we do not allow for explicit rationing.

Recall that the investment in capacity is captured by the increasing marginal cost assumption. Waiting times have a
role precisely because in the absence of waiting times, there would be excess demand. Suppose that waiting times are
zero. Then demand is equal to:

XD
i wi ¼ wj ¼ 0
� � ¼ 2 1� kð Þυ

t
þ k
n
: ð10Þ

The optimal supply for provider i is given by Xi
S. If Xi

SNXi
D(wi=0), then the optimal waiting time is zero: there is

no rationing and the hospital is able to provide instant treatment to all the patients. However, if Xi
Sb Xi

D(wi=wj=0)
there is excess demand equal to Xi

D(wi=wj=0)−Xi
SN0.

There are two possible interpretations for the equilibrium condition XD(wi, wj)=X
S. The first is that at each point in

time, providers ration demand and choose a waiting time high enough to bring the market in equilibrium: patients with
lowest net benefit are not willing to wait and disappear from the market. The equilibrium waiting time is such that the
market always clears: Xi

S=Xi
D(wi, wj). This is the standard interpretation in the literature starting from the seminal

paper of Lindsay and Feigenbaum (1984), followed more recently by Iversen (1993, 1997), Martin and Smith (1999),
Olivella (2002), Barros and Olivella (2005) and Siciliani (2005).

The second possible interpretation is that waiting time adjustment is sluggish. Patients demanding treatment at any
point in time t are added to the waiting list. The waiting list increases over time if demand exceeds supply, and vice
versa. Before being added to the waiting list, each patient is told that they have to wait a time equal to wi(t) to clear the
current waiting list. If the wait is too long some low-benefit patients will give up the treatment, and are not added to the
waiting list. In Appendix A, we show that in the steady state we still obtain the condition Xi

S=Xi
D(wi, wj).

15

Substituting Eq. (5) into Eq. (7) and maximising Eq. (7) with respect to waiting time yields the following first-order
condition for hospital i,

Api
Awi

¼ p� C V Xi wi;wj

� �� �� 	AXi wi;wj

� �
Awi

þ a
ABi wi;wj

� �
Awi

¼ 0; ð11Þ

which implicitly defines a best response function wi(wj). Notice that we have suppressed the superscript on the demand
function.16

Differentiating Eq. (11), we see that waiting times are strategic complements:17

dwi

dwj
¼ �A2pi=AwjAwi

A2pi=Aw2
i

¼ CW �ð Þ 2�k
t � a

� �
k
t þ a k

2t

CW �ð Þ 2�k
t � a

� �
2�k
t � a k

2t

N 0 ð12Þ

If, say, firm j increases its waiting time, some (H-type) consumers switch to hospital i, which now faces a higher
demand. To meet this increase in demand, hospital i has to increase its supply, but this would increase marginal costs,
14 See Lindsay and Feigenbaum (1984), Gravelle et al. (2003), Iversen (1993, 1997), Martin and Smith (1999) and Siciliani (2005).
15 We could potentially analyse also the effect of competition on waiting list as well as waiting time. However, the main focus of policy makers is
on waiting times rather than waiting lists (what matters to patients is how long they have to wait, not how many patients are waiting on the list).
Therefore, we do not pursue this any further.
16 The second-order condition is A2pi=Aw2

i ¼ � C VV �ð Þ 2�k
t � a

� �
2�k
t � a k

2t

� 	
b 0, which is always satisfied for a sufficiently convex cost function;

also, A2pi=AwjAwi ¼ C VV �ð Þ 2�k
t � a

� �
k
t þ a k

2t ; which is always positive whenever ∂2πi/∂wi
2b0.

17 Applying the second-order condition reported in Footnote 16, it is straightforward to see that both the numerator and the denominator are
positive, since C″(·) (2−λ) / tNα is necessary (but not sufficient) for the second-order condition to be fulfilled.
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making the first term in Eq. (11) more positive, implying that ∂πi/∂wiN0. Since the price is fixed, we see from the first-
order condition that the optimal response for hospital i to a higher wj, is to reduce demand by increasing its waiting
time, wi, until the level where ∂πi/∂wi=0. Thus, waiting times are strategic complements for competing hospitals.

In a symmetric equilibrium, wj=wi=w∗. Using Eqs. (5) and (6), the equilibrium waiting time is given by

� 2� kð Þ
t

p� C V Xi w
⁎ð Þð Þ½ � ¼ a Xi w

⁎ð Þ þ k
t

V � w⁎ � t
2n

� �
 �
; ð13Þ

where

Xi w
⁎ð Þ ¼ 2 1� kð Þ v� w⁎

t

� �
þ k
n
; ð14Þ

and w∗=w∗ (v, t, λ, α, p, n).18 Since the right-hand side of Eq. (13) is positive, the expression in the square brackets on
the left hand side of Eq. (13) is negative in an interior solution.19

Thus, the equilibrium waiting time is such that the (regulated) price is lower than the marginal treatment cost. In
other words, the marginal patient is financially unprofitable to treat for the hospital.

We want to focus on equilibria with strictly positive waiting times. This requires that the cost of treating the last
patient who demands treatment at w=0 is larger than the treatment price p. This requirement will be met if the supply
cost function is sufficiently convex. Furthermore, we restrict attention to interior solutions with a partially covered L-
segment in equilibrium, i.e., xLi a 0; 1

2n

� �
.

Proposition 1. Assume that the degree of altruism is sufficiently small. Then there exists an equilibrium waiting time,
implicitly defined by Eq. (13), which is positive and involves a partially covered L-segment, if p ∈ S:=(p_, min {p̄1,
p̄2}), where p_ and p̄1 are implicitly defined by

p
P
¼ C V

k
n

� �
� at
2� k

k
n
þ k

t
V � w⁎ p

P

� �
� t
2n

� �
 �

and

pP1 ¼ C V
1
n

� �
� at
2� k

1
n
þ k

t
V � w⁎ pP1

� �� t
2n

� �
 �
;

while p̄2 is given by

pP2 ¼ C V 2 1� kð Þ υ
t
þ k
n

� �
� at
2� k

2 1� kð Þ υ
t
þ k
2n

þ k
t
V


 �
:

The equilibrium waiting time is monotonically decreasing in the treatment price p.

All proofs, including the proof of the above proposition, are given in Appendix B.
The inverse relationship between equilibrium waiting times and the treatment price is easily explained. A higher

price simply means that the marginal patient becomes less unprofitable to treat, which dampens the incentive to use
waiting time as an instrument to shift demand from unprofitable patients towards neighbouring hospitals.
18 Uniqueness and stability of the equilibrium is confirmed by the positive sign of the Jacobian:

D :¼ j A2pi
Aw2

i

A2pi
AwjAwi

A2pj
AwiAwj

A2pj
Aw2

j

j ¼ 4
t

CW �ð Þ 2� k
t

� a

� �
CW �ð Þ 2� k

t
� a

� �
1� k
t

� a
k
2t


 �
N 0;

where the expression in the square brackets is positive whenever the second-order condition is satisfied.
19 The term V−w∗− t/2n is the utility to the marginal H-type consumer in equilibrium, which is non-negative due to the market coverage
assumption of the competitive segment. Since the right-hand side of Eq. (13) is positive, equilibrium waiting times are such that pbC′(·). The exact
conditions for Eqs. (13)–(14) to constitute an interior equilibrium are provided in the Proof of Proposition 1 in Appendix B.
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Notice also that, since positive equilibrium waiting times imply that the marginal patient is unprofitable for
the hospitals to treat, the equilibrium is “undercutting proof”, in the sense that it is never profitable for a hospital
to deviate from the equilibrium by reducing waiting times in order to drive neighbouring hospitals out of the
market.

4. The impact of competition on waiting times and activity

We will now use the model to analyse if and how competition in hospital markets affects waiting times and
hospital activity in equilibrium. The analysis is done in two steps. We start out by considering the effect of intro-
ducing competition in a hospital market characterised by local monopolies. Subsequently, we consider the effects of
different measures to increase the degree of competition in a hospital market where there is competition to begin
with.

4.1. Introducing competition

Assume that the hospital market described in the previous section consists of local monopolies, where
patients are allocated to hospitals purely according to geographical distance. If a patient decides to visit a
hospital to undergo treatment, she has to attend the nearest hospital. In our model, this means that hospital
i's demand from the H-segment is exogenously given by XH

i ¼ 1
n. Total demand for hospital i is thus given

by

XD
i wið Þ ¼ k

n
þ 1� kð Þ 2 υ� wið Þ

t
: ð15Þ

There is now a demand response to waiting time changes only in the L-segment. Differentiating Eq. (15) with
respect to wi yields

AXD
i wið Þ
Awi

¼ � 2 1� kð Þ
t

b 0: ð16Þ

Comparing Eqs. (6) and (16), we see that demand responsiveness is higher with competition.
The surplus to patients treated at hospital i is given by

Bi wið Þ ¼ k2
Z 1

2n

0
V � wi � txð Þdxþ 1� kð Þ2

Z v�wi
t

0
υ� wi � txð Þdx; ð17Þ

where the first term is the surplus to H-type patients, and the second term is the surplus to the L-type patients.
Differentiating Eq. (17), we obtain

ABi wið Þ
Awi

¼ �XD
i wið Þ: ð18Þ

In the absence of competition, notice how the marginal reduction in patient surplus from waiting is lower in absolute
value (cf. Eq. (9)). The reason is that, under monopoly, changing the waiting time has only an effect on inframarginal
patients.

Inserting Eq. (15) into the first-order condition, Eq. (11), and applying symmetry, the equilibrium waiting time in a
market with local monopolies, wm, is given by20

� 2 1� kð Þ
t

p� C V Xi w
mð Þð Þ½ � ¼ aXi w

mð Þ; i ¼ 1; 2; ð19Þ
20 The second-order condition is given by A2pi=Aw2
i ¼ � CW �ð Þ 2 1�kð Þ

t � a
� �

2 1�kð Þ
t b 0.
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where

Xi w
mð Þ ¼ 2 1� kð Þ v� wm

t
þ k
n
: ð20Þ

Comparing Eqs. (13) and (19) we see that, for w∗=wm, both the left-hand side and the right-hand side of Eq. (19) are
smaller than the left-hand side and right-hand side of Eq. (13). This means that wm ≶ w∗. A closer scrutiny of the two
first-order conditions enables us to derive the following result:

Proposition 2. Introducing competition in a hospital market previously characterised by local monopolies leads to
longer (shorter) waiting times and lower (higher) activity in equilibrium if the competitive segment (λ) is sufficiently
large (small);

1� kb Nð Þ t
2n V � υð Þ :

There are two counteracting effects that contribute to this result. First, ∂Xi/∂wi increases in absolute value with the
introduction of competition (see Eqs. (6) and (16)). In other words, introducing competition means that demand at each
hospital becomes more responsive to changes in the waiting time announced by the hospital, and the magnitude of this
effect is increasing in λ. This is intuitive, since, without competition, only patients in the L-segment respond to waiting
times. So how does the magnitude of |∂Xi/∂wi| affect equilibrium waiting times? Remember that, with a hospital
disutility of positive waiting times (due to altruism), the marginal patient is unprofitable to treat. In equilibrium, this
financial loss is optimally weighed against the disutility of increasing waiting times. When hospital demand responds
to waiting time changes in the competitive demand segment, each hospital gets a stronger incentive to increase the
waiting time, since this now becomes an instrument for shifting unprofitable patients to neighbouring hospitals.

However, there is also another effect, related to the altruistic preferences of the hospitals, that works in the opposite
direction. Comparing Eqs. (9) and (18) we see that the utility gain of reduced waiting times is higher under hospital
competition. With free patient choice, a reduction in waiting times by hospital i attracts patients from neighbouring
hospitals who, due to altruism, contribute positively to the hospital objective function. All else equal, this gives the
hospitals incentives to reduce waiting times with the introduction of competition.

Thus, the introduction of competition has two different implications: on the one hand, there is competition to avoid
treating unprofitable patients, while, on the other hand, there is “altruistic competition” to treat high-benefit patients.
Both of these effects get stronger when the relative size of the competitive segment increases. However this relationship
is more pronounced for the first effect. The reason is that, since treatment costs are convex, while the altruistic disutility
of waiting (−αBi) is concave in wi, the higher level of demand associated with a larger competitive segment means that
competition to avoid treating unprofitable patients becomes a more dominating force as λ increases. Thus, competition
leads to longer waiting times in equilibrium if 1� kb t

2n V�υð Þ. Furthermore, we see that an increase in t and/or a
reduction of n increase the parameter space for which competition leads to longer waiting times. The reason is that
higher travelling costs and/or lower hospital density reduce the (altruistic) utility gain of reducing waiting times under
competition, as can be seen from Eq. (9).

It should be noted that the ambiguous nature of the competition effect on equilibrium waiting times is crucially
dependent on the way altruism is modelled, where hospitals are (partly) altruistic only toward their own patients. If
instead hospitals cared equally about all patients in the market, competition would not influence the effect of waiting
time changes on the altruistic component in the hospital objective function.21 In this case, competition would
unambiguously increase waiting times. Thus, the first of the two above discussed effects – competition to avoid
unprofitable patients – is, in some sense, a more robust effect.22

Finally, it is important to notice that introduction of competition does not affect demand per se; thus, changes in
equilibrium waiting times are driven solely by strategic competition effects.
21 Under both competition and monopoly, the effect of a waiting time increase on total patient utility is given by
A
Pn

k¼1
Bkð Þ

Awi
¼ �XD

i .
22 It may also be the case that hospital managers care, to some extent, about all patients, but place a larger altruistic weight on patients at their own
hospitals. This intermediate case would weaken the “altruistic competition” effect, without eliminating it completely, increasing the likelihood that
competition leads to longer waiting times in equilibrium.
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4.2. Increasing the degree of competition

Depending on interpretation, the effect of increased competition (or increased patient choice) on waiting times and
activity can work through three different parameters in the model: t, λ and n. First, a reduction in travelling costs, t,
will intensify competition between hospitals in the competitive segment of the market. Second, competition will also
naturally increase if a larger share of the total market becomes competitive, i.e., if λ increases. One possible (outside-
the-model) interpretation is a reduction in fixed costs of undergoing hospital treatment for some patients, implying that
a larger share of patients find themselves in the competitive demand segment. Finally, the number of hospitals in the
market, n, is a standard measure of the degree of competition. Below we present the comparative statics results with
respect to the different competition measures on both waiting time and activity levels, obtained by total differentiation
of Eq. (13), applying Cramer's rule.

4.2.1. Lower travelling costs

Aw⁎

At
¼ 1

2

2�k
t CW �ð Þ � a

� �
AX
At þ 1

t p� C V �ð Þð Þ 2�k
t þ a k

t V � w⁎ð Þ� 	
CW �ð Þ 2�k

t � a
� �

1�k
t � a k

2t

b 0; ð21Þ

dX w⁎ð Þ
dt

¼ AX

P
At

þ AX

P
Aw

Aw⁎

P
At

¼ � 2� kð Þ p� C V �ð Þð Þ þ ak V � w⁎ð Þ½ � þ ak υ� w⁎ð Þ
CW �ð Þ 2� k

t
� a

� �
2 1� kð Þ

t
� a

k
t

2 1� kð Þ
t3

N 0; ð22Þ

where AX
At ¼ � 2 1�kð Þ υ�wð Þ

t2 b 0.23,24 Lower travelling costs have two different effects on the hospitals' optimal
choice of waiting times. First, there is a direct demand effect, as more patients in the L-segment will seek
treatment. Each hospital will meet this demand increase by increasing waiting times, and the strength of this
response depends on the additional costs of treating more patients relative to the altruistic disutility of longer
waiting times. Notice here that a higher level of demand also implies that the utility loss of increasing the waiting
time is larger, since there are more patients that need to wait for treatment at hospital i. However, due to the
convexity of treatment costs, the net effect is still positive with respect to waiting time. Second, lower travelling
costs imply that demand facing each hospital becomes more sensitive to changes in waiting times (see Eq. (6)),
which means that it becomes more effective to use waiting times as an instrument to shift unprofitable demand to
neighbouring hospitals. Thus, both effects contribute to increased equilibrium waiting times as a result of lower
travelling costs.

The effect of lower travelling costs on equilibrium hospital activity is given by the sum of a direct positive
demand effect and an indirect negative effect through the increase in equilibrium waiting time. We see from
Eq. (22) that the total effect is negative. It is perhaps surprising that lower travelling costs lead to reduced activity
in equilibrium. This can be explained in the following way: since treatment costs are strictly convex, while the
disutility of waiting (due to altruism) is concave in wi, it is more costly for hospitals to meet increased demand by
increasing activity, relative to waiting times. Consequently, the hospitals will meet a demand increase (induced by
lower travelling costs) by increasing waiting times until the level where the demand increase is completely offset.
However, there is a second effect of lower travelling costs, as explained above. The effect on the responsiveness of
demand to waiting times implies that the hospitals have incentives to increase demand even beyond the level where
the initial demand increase is nulled out. Thus, a reduction of travelling costs, which initially causes an increase in
23 Notice that the first-order condition ensures that the expression in the square bracket of the numerator of ∂w⁎/∂t is negative.

24 Aw⁎

At ¼ �
jA2pi=AwiAt A2pi=AwiAwj

A2pj=AwjAt A2pj=Aw2
j

j
D . Notice that A2pi=AwiAt ¼ A2pj=AwjAt, so that Aw⁎

At ¼ � 1
D A2pi=AwiAt
� �

A2pj=Aw2
j � A2pi=AwiAwj

h i
¼

� A2pi=AwiAt

A2pj=Aw2
j þ A2pi=AwiAwj

.
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demand for hospital treatments, will actually lead to lower activity in equilibrium, due to the equilibrium response
in waiting times.

4.2.2. A larger competitive segment

Aw⁎

Ak
¼ 1

2

2�k
t CW �ð Þ� �� aÞ AX

Ak þ p�C V �ð Þ
t � a

t V � w⁎ � t
2n

� �
CW �ð Þ 2�k

t � a
� �

1�k
t � a k

2t

b 0: ð23Þ

dX w⁎ð Þ
dk

¼ AX
Akþ

þ AX
Aw�

Aw⁎

Ak
�=þ

¼ 1
2

� p� C V �ð Þð Þ 2 1� kð Þ
t2

þ 2a
t2

1� kð Þ V � w⁎ � t
2n

� �
þ k υ� w⁎ � t

2n

� �h i

CW �ð Þ 2� k
t

� a

� �
1� k
t

� a
k
2t

;

ð24Þ
where AX

Ak ¼ 2 1
2n � υ�w

t

� �
N 0 since, in equilibrium, xH=1/2n and xL=(υ−w) / t, and, by assumption, xLbxH.25

The first term in the numerator of ∂w∗/∂λ is positive while the second and the third are negative. Notice that even for
a low degree of altruism, the effect of λ on waiting time is indeterminate. There are two offsetting effects that contribute
to this ambiguity. Since demand is higher from the competitive segment, a higher λwill increase total demand, which –
all else equal – contributes to longer waiting times. However, a larger H-segment implies that demand becomes less
responsive to changes in waiting times, as seen from Eq. (6). This means that it becomes less effective to use waiting
times to shift unprofitable patients to neighbouring hospitals, which – all else equal – reduces equilibrium waiting
times. The sum of these two effects is indeterminate.

The effect of a larger competitive segment on equilibrium activity is also indeterminate, although clearly positive for
sufficiently low values of λ. The reason is that, for low values of λ, the magnitude of the indirect effect through
changes in equilibrium waiting times is relatively low, making the direct demand effect the dominant one. The first term
in the numerator of dX(w∗)/dλ is always positive. The second term is given by a weighted average of the utility of a H-
type patient and a L-type patient when receiving treatment and located at x=1/2n (by assumption this utility is positive
for the H-type and negative for the L-type). This term is consequently also positive if λ is sufficiently low.
4.2.3. Increased hospital density

Aw⁎

An
¼ � 1

2

CW �ð Þ 2�k
t � a

� �
k
n2 þ a k

2n2

CW �ð Þ 2�k
t � a

� �
1�k
t � a k

2t

b 0 ð25Þ

dX w⁎ð Þ
dn

¼ AX
An�

þ AX
Aw�

Aw⁎

An�
¼ 1

2n2t
ak

CW �ð Þ 2�k
t � a

� �
1�k
t � a k

2t

N 0 ð26Þ

d nX w⁎ð Þ½ �
dn

¼ X þ n
dX
dn

N 0: ð27Þ

Notice that the signs of Eqs. (25) and (26) are determined by applying the second-order condition.26
25 Aw⁎

Ak ¼ �
jA2pi=AwiAk A2pi=AwiAwj

A2pj=AwjAk A2pj=Aw2
j

j
D . Notice that ∂2π i/∂wi∂λ = ∂2π j/∂wj∂λ, so that Aw⁎

Ak ¼ � 1
D A2pi=AwiAk
� �

A2pj=Aw2
j � A2pi=AwiAwj

h i
¼

� A2pi=AwiAk

A2pj=Aw2
j þ A2pi=AwiAwj

.

26 Aw⁎

An ¼ �
jA2pi=AwiAn A2pi=AwiAwj

A2pj=AwjAn A2pj=Aw2
j

j
D . Notice that ∂2π i/∂wi∂n = ∂2π j/∂wj∂n, so that Aw⁎

An ¼ � 1
D A2pi=AwiAn
� �

A2pj=Aw2
j � A2pi=Awiwj

h i
¼

� A2pi=AwiAn

A2pj=Aw2
j þ A2pi=AwiAwj

.
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Increased hospital density unambiguously reduces waiting times in equilibrium. The intuition is quite simple. An
increase in nmeans that – all else equal– each hospital faces a lower demand from the competitive segment. This means,
due to the convexity of treatment costs, that the marginal treatment cost (for the last patient) is lower at each hospital.
Consequently, the marginal patient becomes less unprofitable to treat and the hospitals will respond by reducing waiting
times. Note that increased capacity, in itself, is not enough to reduce waiting times, since the effect on waiting times
comes only through the competitive segment, where increased capacity means lower demand for each hospital. This can
easily be confirmed by observing that ∂w⁎/∂n=0 if λ=0.

There are two effects – one direct and one indirect – of an increase in n on the equilibrium activity at the hospital
level. Increased hospital density in the market means that the number of patients treated per hospital from the
competitive segment goes down. However, there is an indirect “spillover” effect from the competitive to the monopoly
demand segment. Due to the demand effect in the competitive segment, resulting in shorter waiting times, demand
increases from the hospitals' monopoly segments. Eq. (26) shows that the net effect on demand is positive. In this case,
the reduction in waiting times fully compensates for the initial drop in demand. Total activity clearly increases with
hospital density, given that activity per hospital increases.

The effects of increased hospital competition on waiting times and activity can be summarised as follows:

Proposition 3. (i) Lower travelling costs increase waiting times and decrease hospital activity.
(ii) A larger competitive market segment has an indeterminate effect on waiting times and hospital activity. In

general, the effect on activity is positive if the competitive segment is sufficiently small.
(iii) Increased hospital density reduces waiting times and increases activity per hospital, as well as total activity in

the market.
5. Hospital competition and welfare

Having derived and characterised the equilibrium waiting time, we want to explore the issue of whether competition
leads to excessive or suboptimal levels of waiting time from a social welfare perspective. To answer this question, we first
need to specify the welfare function.We use the conventional measure of welfare as an unweighted sum of consumers' and
producers' surplus. The welfare analysis is conducted at the hospital level; for total welfare just multiply by n.

Since the model is symmetric, the socially optimal waiting time must be uniform across hospitals. Setting wi=wj=w,
the surplus to patients treated at a particular hospital is then given by

B wð Þ ¼ k2
Z 1

2n

0
V � w� txð Þdxþ 1� kð Þ2

Z v�w
t

0
υ� w� txð Þdx; ð28Þ

where the first term is the surplus to H-type patients, and the second term is the surplus to the L-type patients. Notice that
we are assuming, as we did for the hospitals, that the regulator cannot discriminate between patient types in terms of
waiting time. The patient surplus function can be written as

B wð Þ ¼ k
n

V � w� t
4n

� �
þ 1� kð Þ

t
υ� wð Þ2: ð29Þ

Not very surprisingly, we see that the consumer surplus is always maximised at zero waiting time.
Writing the social welfare function as the sum of consumers' and producers' surplus net of third-party payments,

welfare at the hospital level is given by

W wð Þ ¼ B wð Þ þ T þ pX wð Þ � C X wð Þð Þ � F � 1þ gð Þ pX wð Þ þ T½ �; ð30Þ
where γN0 is a positive constant denoting the opportunity cost of public funds.27 Since it is costly for the regulator to
fund hospital care, we assume that the lump-sum transfer T is set such that the hospital's participation constraint is
27 The altruistic component αB is not included in the welfare function as this would lead to double-counting. As argued by Chalkley and
Malcomson (1998), “There is a strong case for excluding this benevolent component from social welfare on the grounds that benevolence represents
a desire to do what is in the social interest and, as such, should have no role in determining what the social interest is.” See also Hammond (1987)
for further discussion. Notably, our results will not be qualitatively affected by this in any case.
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binding. Adding the (realistic) assumption that the provider also has a limited liability constraint, the transfer is set so
that pX+T=C(X)+F. The social welfare function then simplifies to

W wð Þ ¼ B wð Þ � 1þ gð Þ C Xð Þ þ F½ �: ð31Þ

5.1. The socially optimal waiting time

The socially optimal waiting time is obtained by maximising welfare with respect to waiting time, yielding the
following first-order condition28

AW
Aw

¼ AB wð Þ
Aw

þ 1� gð ÞC V �ð ÞAX wð Þ
Aw

¼ 0; ð32Þ

which states that waiting time is socially optimised at a level where the utility loss to patients from a marginal increase
in waiting time is equal to the corresponding reduction of treatment costs.

Using Eqs. (14) and (29), and rearranging Eq. (32), we can write the expression for the socially optimal waiting
time, denoted by ws, as follows:

1þ gð ÞC V X wsð Þð Þ ¼ �X wsð Þ
AX wsð Þ
Aw

; ð33Þ

where

X wsð Þ ¼ 2 1� kð Þ υ� ws

t

� �
þ k
n
; ð34Þ

AX wsð Þ
Aw

¼ � 2 1� kð Þ
t

: ð35Þ

and ws=ws (υ, t, λ, n).
Eq. (33) defines an interior solution for the socially optimal waiting time with a partially covered L-segment, i.e.,

wsN0 and x La 0; 1
2n

� �
. Proposition 4 below provides the exact conditions needed to support this equilibrium:

Proposition 4. There exists a socially optimal waiting time, ws, implicitly defined by Eq. (33), which is strictly positive
and involves a partially covered L-segment, if

C V
k
n

� �
b

tk
2n 1� kð Þ 1þ gð Þ ; and

C V 2 1� kð Þ υ
t
þ k
n

� �
N

υ
1þ g

þ tk
2n 1� kð Þ 1þ gð Þ :

We see that a positive socially optimal waiting time with a partially covered L-segment requires that the cost
function C is sufficiently convex. The socially optimal waiting time can be characterised by total differentiation,
yielding the following comparative statics results:

Aws

An
¼ � kt

2n2 1� kð Þ b 0; ð36Þ
28 The second-order condition is given by

A2W
Aw2

¼ � 2 1� kð Þ
t

1þ gð Þ CW �ð Þ 2 1� kð Þ
t

� 1
1þ g


 �
b 0

Thus, the supply cost function must be sufficiently convex for the condition to be fulfilled, i.e., CW �ð ÞN t
2 1�kð Þ 1þgð Þ.
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Aws

At
¼ � υ� wð Þ

t
� C V �ð Þ2 1� kð Þ=t2

2 1�kð Þ
t CW �ð Þ 2 1�kð Þ

t � 1
1þg

h i b 0; ð37Þ

Aws

Ak
¼ t=2n� υ� wð Þ½ �

1� kð Þ � C V �ð Þ
1� kð Þ CW �ð Þ 2 1�kð Þ

t � 1
1þg

h i b 0; ð38Þ

Aws

Ag
¼ C V �ð Þ

1þ gð Þ CW �ð Þ 2 1�kð Þ
t � 1

1þg

h i N 0; ð39Þ

Aws

Aa
¼ 0: ð40Þ

The results can be summarised in the following proposition:

Proposition 5. The socially optimal waiting time is decreasing in hospital density and travelling costs, and increasing
in the opportunity cost of public funds. While the size of the competitive demand segment has an indeterminate effect,
the degree of altruism has no effect on the socially optimal waiting time.

Intuitively, an extra provider reduces the demand for each hospital, which reduces the socially optimal waiting time.
An increase in travelling costs reduces the demand from low-benefit patients, which reduces the optimal waiting time.
Also, higher travelling costs reduce the responsiveness of demand to increases in waiting times, and therefore reduces
the effectiveness of waiting times in bringing in equilibrium the demand and supply of treatments, which reduces the
optimal waiting times. For both reasons, waiting times decrease in equilibrium when travelling costs go up.

An increase in the proportion of high-benefit patients increases demand as high-benefit patients always demand
treatment in equilibrium, while some low-benefit patients do not. This leads to a longer optimal waiting time. On the
other hand, a higher proportion of high-benefit patients reduces the responsiveness of demand to increases in waiting
times, and therefore reduces the effectiveness of waiting times as a re-equilibrating mechanism. This reduces the
optimal waiting times. Consequently, waiting times may increase or decrease.

A higher opportunity cost of public funds naturally increases the socially optimal waiting time, while the degree of
altruism has no effect. Since the limited-liability constraint is binding, rather than the participation constraint, the
degree of altruism does not influence the socially optimal waiting time.

5.2. The socially optimal treatment price

The socially optimal waiting time can always be implemented by an appropriate choice of p. This price, denoted by
p∗, is such that29

p⁎ ¼ X w⁎ð Þ t kþ 2 1� kð Þ 1� að Þ½ �
2 1� kð Þ 2� kð Þ � gC V X w⁎ð Þð Þ � ak

2� k
V � w⁎ � t

2n

� �
: ð41Þ

Intuitively, the optimal price is higher when the marginal benefit from a reduction in waiting time is higher
� AB

Aw ¼ X
� �

, and it is lower when the degree of altruism α or the opportunity cost of public funds γ is higher. The last
term in Eq. (41) takes into account the fact that the marginal benefit from a reduction in waiting time in a competitive
setting � AB wi;wjð Þ

Awi

� �
is higher from the provider's perspective than from the social one � AB w⁎ð Þ

Aw⁎

� �
: the larger the difference

between the two, the lower is the optimal price.
29 The optimal price p∗ maximises Eq. (31) so that: [∂B(w∗)/∂w∗− (1+γ)C′(·)(∂X(w)/∂w)] ∂w∗/∂p=0, where ∂B(w∗)/∂w∗=−X(w∗) and ∂X(w∗)/
∂w∗=−2(1−γ) / t. Comparing the above with Eq. (11), the result is obtained.
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The effects of our different competition measures on the optimal price can be derived by total differentiation,
yielding the following comparative statics results:
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The results are summarised as follows:

Proposition 6. If the degree of altruism or the opportunity cost of public funds is sufficiently low, then a higher
hospital density increases the optimal price while lower travelling costs decrease the optimal price. A higher
competitive segment has an indeterminate effect on the optimal price.

Since dX(w∗)/dnN0, a higher hospital density increases activity and increases the social marginal benefit from a
reduction in waiting times and therefore increases the optimal price. However a higher activity also increases the
marginal cost, which induces a lower price. Furthermore, a higher hospital density reduces waiting times and travelling
costs, increasing the marginal benefit from a reduction in waiting time for the semi-altruistic provider, which induces a
lower price. Whenever the opportunity cost of public funds or the degree of altruism is sufficiently low the first effect
dominates and the optimal price increases.

Since dX(w∗)/dtN0, lower travelling costs reduce activity and reduce the marginal social benefit from a reduction in
waiting times and therefore reduces the optimal price. However a lower activity also reduces the marginal cost, which
induces a higher price. Furthermore, lower travelling costs imply a more responsive demand, which increases the
marginal revenue for the hospital from a reduction in waiting times, inducing a lower optimal price. Finally, lower
travelling costs increase waiting times but increase the utility of the patients, so that the marginal benefit from a
reduction in waiting time for the semi-altruistic provider can be higher or lower. Whenever the opportunity cost of
public funds or the degree of altruism is sufficiently low the optimal price reduces when travelling costs are smaller.

The effect of variations in the competitive segment λ on optimal prices is generally indeterminate. Overall, the
analysis in this section suggests that whether higher-powered incentive schemes complements or substitute competition
depends on the type of competition. Given that α or γ are not too high, while more competition through a higher
hospitals density makes higher-powered incentive schemes more desirable, more competition through lower travelling
costs makes higher-powered incentive scheme less desirable.

5.3. Does competition improve social welfare?

Consider the policy choice of monopoly versus competition in the hospital market. Since, for a given waiting time, the
patient surplus B(w) is unaffected by this choice of market regime, it is straightforward to see that competition is welfare
neutral if the treatment price is set at the level whichmaximises socialwelfare, i.e.,p=p∗. In this case, the effect of competition
on equilibrium waiting times will be neutralised by an appropriate adjustment of p, keepingw∗=ws. However, in the general
case, where p is not necessarily set at the optimal level,30 the welfare effect of hospital competition is characterised as follows:

Proposition 7. Let p∗ and pm be the prices that yield w∗=ws and wm=ws, respectively.
(i) Assume that the competitive demand segment is large; 1� kb t

2n V�vð Þ, implying w∗Nwm and p∗Npm. Then there
exists a price p̃∈ (pm, p∗) such that hospital competition is welfare superior (inferior) if pN(b) p̃.
30 Indeed, the most frequently used hospital payment system is DRG-pricing, which is close to average cost pricing for specific treatments, and
clearly not in line with the optimal pricing rule considered in this section.



Fig. 1. Welfare effects of competition with a large competitive segment.
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(ii) Assume that the competitive demand segment is small; 1� kN t
2n V�vð Þ, implying w∗bwm and p∗b pm. Then there

exists a price p≈∈ (p∗, pm) such that hospital competition is welfare superior (inferior) if p b(N) p≈.

Whether or not hospital competition improves social welfare depends here on the characteristics of the
reimbursement system (more specifically, the level of prices p) and the relative size of the competitive demand segment
(λ). An increase in the treatment price always induces hospitals to increase supply and shorten waiting times. An
illustration of the case of 1� kb t

2n V�υð Þ is given in Fig. 1. The following discussion summarises the different cases:
High price. When the price is sufficiently high, waiting times in the monopoly equilibrium are shorter than the

socially optimal level and activity is excessively high (i.e., the marginal benefit from treating an extra patient is below
the marginal cost).

a) If, in addition, the competitive segment λ is sufficiently large so that w∗Nwm, then hospital competition increases
waiting times towards the optimal level ws, reducing activity and increasing welfare (see Fig. 1 for pNp∗).

b) In contrast, if the competitive segment λ is sufficiently small so that w∗bwm, then hospital competition reduces
waiting times even further from the optimal level ws, increasing activity and reducing welfare.

Low price. The opposite analysis holds if the price is sufficiently low. Then waiting times in the monopoly
equilibrium are longer than the socially optimal level and activity is excessively low (i.e., the marginal benefit from
treating an extra patient is above the marginal cost).

a) If, in addition, the competitive segment λ is sufficiently large so that w∗Nwm, then hospital competition increases
waiting times further from the optimal level ws, reducing activity and reducing welfare (see Fig. 1 for pbpm).

b) In contrast, if the competitive segment λ is sufficiently small so that w∗bwm, then hospital competition reduces
waiting times towards the optimal level ws, increasing activity and increasing welfare.

Suppose that we start by a situation where waiting times are excessively high and prices too low. For example, until
a few years ago in the UK hospitals were paid with fixed budgets ( p=0). Similarly, in Norway in 1997 only 30% of the
revenues were based on tariffs. In both countries waiting times are considered a major policy concern and are at least
perceived as too high. Our analysis suggests that policies that encourage competition will have the expected effect only
if the competitive demand segment is sufficiently low. It is only in this case that competition will reduce waiting times,
increase activity and increase welfare.

6. Extensions

In this section, we extend our analysis in two directions. First, we allow for a fee, or more precisely, a copayment
associated with hospital treatment. Second, we perform a welfare analysis assuming that the regulator might put a
stronger weight on poor patients. Redistribution is a relevant concern in hospital treatment.



1623K.R. Brekke et al. / Journal of Public Economics 92 (2008) 1607–1628
6.1. Introducing a charge (copayment)

The model so far has assumed that patients receive treatment free of charge. Suppose that on top of receiving a
payment p from the government, hospitals can also charge a small fee f. The results obtained in Sections 2–4 are
mainly unchanged. Suppose that patients have income m, and that utility is separable between income and benefit from
treatment, so that the utility of an H-type (resp. L-type) patient who is located at x and seeking treatment at hospital i,
located at zi, is given by

UH x; zið Þ ¼ V � tjx� zij � wi þ u m� fð Þ; ð45Þ

UL x; zið Þ ¼ v� tjx� zij � wi þ u m� fð Þ: ð46Þ
We can show that by redefining

V V¼ V þ u m� fð Þ; v V¼ vþ u m� fð Þ; p V¼ p� f ð47Þ
the model is analytically equivalent to the one presented above. More precisely, the equilibrium waiting time is given
by Eqs. (13) and (14), where V, v and p are substituted with V′, v′ and p′. Similarly, for the comparative statics of
waiting time with respect to t, λ and n (Section 4.2). Also Proposition 2 regarding the effect of introducing competition
remains identical. This is because

V V� v Vð Þ ¼ V þ u m� fð Þ � v� u m� fð Þ ¼ V � vð Þ:

More insightful is the effect of the introduction of a charge on welfare. The surplus to patients treated at a particular
hospital is then given by

B w; fð Þ ¼ k2
Z 1

2n

0
V þ u m� fð Þ � w� txð Þdxþ 1þ kð Þ2

Z vþu m�fð Þ�w
t

0
vþ u m� fð Þ � w� txð Þdx; ð48Þ

where the first term is the surplus to H-type patients, and the second term is the surplus to the L-type patients.
Differentiating with respect to the charge f we obtain

AB w; fð Þ
Af

¼ �um �ð ÞX w; fð Þb 0:

Using the same definition of social welfare as in the previous analysis, welfare at the hospital level is given by

W wð Þ ¼ B wð Þ þ T þ pþ fð ÞX wð Þ � C X wð Þð Þ � F � 1þ gð Þ pX wð Þ þ T½ �: ð49Þ

Assuming that the regulator sets the price so as to induce the socially optimal waiting time, ws, and assuming, as
before, that the lump-sum transfer T is set such that the hospital's limited liability constraint is binding, social welfare is
given by

W ws fð Þ; fð Þ ¼ B ws fð Þ; fð Þ � 1þ gð Þ C X ws fð Þ; fð Þð Þ þ F½ � þ f 1þ gð ÞX ws fð Þ; fð Þ: ð50Þ

We want to determine the welfare effect of an increase in the charge f. Applying the Envelope Theorem, we ignore
the indirect effects of the fee on waiting time, and focus only on the direct effects. Therefore,

AW ws fð Þ; fð Þ
Af

¼ �um �ð ÞX s � 1þ gð ÞC V X sð ÞAX
s

Af
þ 1þ gð ÞX s þ f 1þ gð ÞAX

s

Af
; ð51Þ

where

X s :¼ X ws fð Þ; fð Þ ¼ k
n
þ 2 1� kð Þ v� ws þ u �ð Þ

t


 �
: ð52Þ
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From Eq. (51) we can identify four effects: (i) a higher fee reduces consumer surplus, and welfare (first term); (ii) a
higher fee reduces demand, which reduces the marginal cost, which increases welfare (second term); (iii) a higher fee
reduces the need of distortionary taxation and therefore increases welfare (third term); however (iv) a higher fee
reduces demand, which reduces the benefits from lower distortionary taxation (fourth term).

Applying the first-order condition with respect to a socially optimal waiting time, (32), the above expression can be
simplified to,

AW ws fð Þ; fð Þ
Af

¼ 1þ gð ÞX s �ð Þ 1� �Xf

h i
; ð53Þ

where

�Xf :¼ �AX s

Af
f
X s

¼ 2n 1� kð Þfum �ð Þ
tkþ 2n 1� kð Þ υ� ws þ u �ð Þ½ � : ð54Þ

Two results can be straightforwardly obtained, which are summarised in the final proposition of the paper:

Proposition 8. (i) Introducing a charge is always welfare improving:

AW ws fð Þ; fð Þ
Af j

f¼0

N 0;

(ii) Increasing the charge is welfare increasing if demand is inelastic: � f
Xb1.

For hospital care, the empirical evidence normally suggests that the elasticity is well below one. For example,
evidence from the Rand Health Insurance Experiment suggests that a higher fee reduces demand by 0.2% (Manning
et al., 1987; Newhouse, 1993).

6.2. Inequality aversion

The welfare function used so far is utilitarian as the two types of patients have the same weight. High benefit patients
always get treated in our model. Therefore, inequality aversion in this model implies a higher weight for patients with
low benefit. Define β N1 as the weight given to low-benefit patients. With this reformulation, the patient surplus
function becomes:

B wð Þ ¼ k
n

V � w� t
4n

� �
þ b

1� kð Þ
t

υ� wð Þ2 ð55Þ

with

AB
Aw

¼ � k
n
� 2b

1� kð Þ
t

υ� wð Þb 0: ð56Þ

A higher weight β implies that the marginal social cost of waiting is higher, which reduces the optimal social wait:31

Aw
Ab

¼ � υ� wð Þ
1þ gð Þ CW �ð Þ 2 1�kð Þ

t � b
1þg

h i b 0: ð57Þ

A lower waiting time, in turn, implies a higher price p if the degree of altruism or the opportunity cost of public funds
is sufficiently low. The main results of the analysis are unchanged.
31 Notice that, with this reformulation of the social welfare function, the second-order condition for an interior solution requires that
C VV �ð ÞN tb

2 1�kð Þ 1þgð Þ.
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7. Conclusions and policy implications

This study has analysed the impact of hospital competition on waiting times, using a Salop-type model. Our main
result is that, compared with a benchmark case of local monopolies, hospital competition reduces waiting times only if
the competitive demand segment is sufficiently small. Otherwise, if free choice is relevant for a sufficiently large share
of the total patient mass (i.e., if the competitive segment is sufficiently large), then competition increases waiting times.
Therefore we suggest that policies that encourage choice and competition in health care markets may not be as
successful as policymakers might expect. The intuition for this ambiguous result is that, on the one hand, free patient
choice induces hospitals to “compete” to avoid treating unprofitable patients, while, on the other hand, free patient
choice also induces semi-altruistic providers to compete to attract high-benefit patients. The first effect dominates when
the competitive segment is sufficiently large.

We also find that policies aimed at reducing travelling costs (like reimbursing travel expenses for patients choosing
to receive treatment in hospitals outside their catchment area) may surprisingly increase waiting times and reduce
overall activity. The reason stems from the fact that reducing travelling costs makes the demand for treatment more
elastic, making waiting times a more effective rationing tool.

According to our analysis, policies aimed at increasing hospital density will have the expected effect of reducing
waiting times and increasing activity. For example, in countries like Denmark, the UK and Spain, governments have
decided to contract out patients to existing private hospitals. This policy can be seen as effectively increasing the
density of hospitals by opening the patients from the public waiting list to private providers. Since demand in each
hospital is lower and the marginal cost less steep, providers will respond by increasing activity and reducing waiting
times.

Many countries increasingly remunerate hospitals according to activity-based funding rules (like DRG pricing in
Norway and other European countries or HRG pricing in the UK) where hospitals receive a price for each patient
treated. Our analysis suggests that for countries where waiting times are excessively low and prices are too high,
hospital competition is socially preferable to monopoly if the competitive demand segment is sufficiently large. In this
case, competition will increase waiting time towards the optimal level, reducing activity and increasing welfare.

In contrast, for countries (like perhaps the UK, Finland or Norway) where waiting times are excessively high and
prices too low, competition will reduce waiting times, increase activity and increase welfare only if the competitive
demand segment is sufficiently small.

Finally, we show that whether higher-powered incentive schemes complements or substitute competition depends
on the type of competition. While more competition through a higher hospitals density makes higher-powered
incentive schemes more desirable, more competition through lower travelling costs makes higher-powered incentive
scheme less desirable.

Appendix A. Adjustment of waiting times to steady state

Denote yi(t) as the waiting list at time t in hospital i. At any point in time the waiting list increases (decreases) if
demand is bigger than supply:

Ayi

At
¼ XD

i wi tð Þ;wj tð Þ
� �� X S

i tð Þ ðA1Þ

The waiting time is given by the number of periods that each patient has to wait before her/his turn arrives, i.e.,
before all the patients on the current waiting list are treated. Therefore, the waiting time is implicitly defined by (see
Siciliani, in press)

Z tþwi tð Þ

t
X S
i sð Þds ¼ yi tð Þ: ðA2Þ

Differentiating Eq. (A2) with respect to time, we obtain

1þ Awi

At

� �
X S
i t � wið Þ � X S

i tð Þ ¼ Ayi
At

:
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Substituting ∂yi/∂t from Eq. (A1), we obtain the waiting-time dynamics:

Awi

At
¼ XD

i wi tð Þ;wj tð Þ
� �� X S

i t þ wi tð Þð Þ
X S
i t þ wi tð Þð Þ : ðA3Þ

The waiting time increases (decreases) if the demand at time t is higher (lower) than the supply at time t+w.
We focus on the steady state solution, so that the waiting list, waiting time, supply and demand are constant over

time, i.e.,

Ayi
At

¼ Awi

At
¼ 0;

wi tð Þ ¼ wi; wj tð Þ ¼ wj;

XS
i tð Þ ¼ X S

i t þ wi tð Þð Þ ¼ XS
i ; XD

i wi tð Þ;wj tð Þ
� � ¼ XD

i wi;wj

� �
:

��

In the steady state, ∂wi /∂t=0, and Eq. (A3) implies Xi
D(wi, wj)=Xi

S, while the waiting list Eq. (A1) simplifies to
Xi
Swi=yi. This last expression can be written intuitively as wi=yi/Xi

S. In the steady state, the waiting time is given by the
ratio between the waiting list and supply: the waiting time is given by the number of periods to clear the waiting list. In
the model derived in the paper, the waiting list yi does not play any role and it is therefore suppressed.

Appendix B. Proofs

Proof of Proposition 1. We start by confirming the last part of the Proposition. By total differentiation of the first-
order conditions, we obtain32

Aw⁎

Ap
¼ � 2� kð Þ=t

2 CW �ð Þ 2�k
t � a

� � 1�kð Þ
t � a k

2t

h i b 0

An interior solution with positive equilibrium waiting times requires that the following conditions are met: w∗N0
and xLa 0; 1

2n

� �
. Assume xL=0, which implies X w⁎ð Þ ¼ k

n. Inserting this into the first-order condition for hospital i, and
rearranging, we get

p ¼ C V
k
n

� �
� at
2� k

k
n
þ k

t
V � w⁎ pð Þ � t

2n

� �
 �

Denote the price that solves this equation by p_. Since ∂w⁎/∂pb0 and ∂xL/∂wb0 we know that xLN0 if pNp_. Now
assume xL ¼ 1

2n, which implies X w⁎ð Þ ¼ 1
n.

Inserting this into the first-order condition yields

p ¼ C V
1
n

� �
� at
2� k

1
n
þ k

t
V � w⁎ pð Þ � t

2n

� �
 �
:

Denote the price that solves this equation by p̄1. Again, since ∂w⁎/∂pb0 and ∂xL/∂wb0 we know that xLb 1
2n if

pb p̄1. Finally, assume w⁎=0, which implies X 0ð Þ ¼ 2 1� kð Þ vt þ k
n. The first-order condition is then given by

p ¼ C V 2 1� kð Þ υ
t
þ k
n

� �
� at
2� k

2 1� kð Þ υ
t
þ k
2n

þ k
t
V


 �
32 Aw⁎

Ap ¼ �
jA2pi=AwiAp A2pi=AwiAwj

A2pj=AwjAp A2pj=Aw2
j

j
D

: Notice that ∂2πi/∂wi∂p=∂2πj/∂wj∂p, so that Aw⁎

Ap ¼ � 1
D A2pi=AwiAp
� �

A2pj=Aw2
j � A2pi=AwiAwj

h i
¼

� A2pi=AwiAp
A2pj=Aw2

j þA2pi=AwiAwj

.
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Denote this price by p̄2. By a similar argument as above, w⁎N0 if pb p̄2. Since k
nbmin 1

n ; 2 1� kð Þ υt þ k
n

� 

, it is

straightforward to see that p_ bmin {p̄1, p̄2}, implying that S is non-empty, if α is sufficiently small. □

Proof of Proposition 2. Subtracting Eq. (13) from Eq. (19) yields

2
a
C V Xi w

⁎ð Þð Þ � C V Xi w
mð Þð Þ½ � � 2 wm � w⁎ð Þ ¼ k

2 1� kð Þn V � υð Þ � t
n 1� kð Þ 2� kð Þ :

Let us first confirm that the left-hand side (LHS) of this equation is monotonic in wm and w⁎. Using Eqs. (5) and
(15), we have that A LHSð Þ=Aw⁎ ¼ � 2

aCW Xið Þ 2�k
t þ 2 and A LHSð Þ=Awm ¼ 2

aCW Xið Þ 2 1�kð Þ
t � 2. Applying the second-

order conditions, it is straightforward to verify that ∂ (LHS)/∂w⁎b0 and ∂(LHS)/∂wmN0. Since LHS=0 if w⁎=wm, it
follows that w⁎N(b)wm if the right-hand side of the equation is negative (positive), which is the case if
1� kb Nð Þ t

2n V�υð Þ. Since Eqs. (14) and (20) are identical for a given waiting time, wmbw⁎ implies that Xi (w
m)NXi (w⁎)

and vice versa. □

Proof of Proposition 4. First, xL=0 implies X wsð Þ ¼ k
n. It follows from Eq. (33) that C V kn

� �
b tk

2n 1�kð Þ 1þgð Þ for x
LN0.

Second, xL ¼ 1
2n implies X wsð Þ ¼ 1

n. We see from Eq. (33) that C V 1n
� �

N t
2n 1�kð Þ 1þgð Þ for x

Lb 1
2n. Third, w

s=0 implies
X 0ð Þ ¼ 2 1� kð Þ υt þ k

n. From Eq. (33) it is evident that wsN0 requires C V 2 1� kð Þ υt þ k
n

� �
N υ

1þg þ tk
2n 1�kð Þ 1þkð Þ. Finally,

observe that since, by definition, 2 1� kð Þ υt þ k
nV

1
n, it follows that w

sN0 implies xLb 1
2n, making the condition for xLb 1

2n

redundant. □

Proof of Proposition 7. We know (Proposition 1) that ∂w⁎/∂pb0, and it is straight-forward to show that this also
holds under monopoly, i.e., ∂wm/∂pb0. (i) From Proposition 2 we know that, if 1� kb t

2n V�υð Þ, w⁎bw
m for all p,

implying that pmbp⁎. This means that, from a social welfare perspective, waiting time is too long in both regimes if
pbpm and too short in both regimes if pNp⁎. Since w⁎Nwm for all p, it follows that competition is always welfare
superior if pNp⁎, while a monopoly regime is always welfare superior if pbpm. For p∈ ( pm, p⁎), replacing monopoly
with competition means going from a regime with too short waiting to a regime with too long waiting times in
equilibrium. Since W is single-peaked in p, there exists a unique price p̃∈ (pm, p⁎) such that competition is welfare
superior (inferior) if p N(b) p̃. (ii) By the inverse argument we can define an equivalent price p≈ for the case of
1� kN t

2n V�υð Þ. □
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