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Abstract

This is an introduction to the Mathematics of the Continuous Wavelet Transform. We

describe some of the most relevant theoretical results, and discuss some of the implemen-

tation choices that have to be done in practice. We also briefly describe our Wavelet toolbox,

which can be freely downloaded at http://sites.google.com/site/aguiarconraria/joanasoares-

wavelets.
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The Wavelet

In what follows, L2 (R) denotes the set of square integrable functions, i.e. the set of functions

defined on the real line such that �x� := {
�
∞

−∞
|x (t)|2 dt}1/2 <∞, with the usual inner product,

�x, y� :=
�
∞

−∞
x(t)y∗(t)dt. The asterisk superscript denotes complex conjugation. Given a function

x (t) ∈ L2 (R),

X (ξ) :=

�
∞

−∞

x (t) e−i2πξtdt =

�
∞

−∞

x (t) [cos (2πξt)− i sin (2πξt)] dt. (A.1)

will denote its Fourier transform. We recall the well-known Parseval relation, valid for all

x (t) , y (t) ∈ L2 (R), �x (t) , y (t)� = �X (ξ) , Y (ξ)�, from which the Plancherel identity imme-

diately follows: �x (t)� = �X (ξ)� . The minimum requirements imposed on a function ψ (t) to

qualify for being a mother (admissible or analyzing) wavelet are that ψ ∈ L2 (R) and also fulfills

a technical condition, usually referred to as the admissibility condition, which reads as follows:

0 < Cψ :=

�
∞

−∞

|Ψ(ξ)|
|ξ| dξ <∞, (A.2)

where Ψ(ξ) is the Fourier transform of ψ (t),(see Daubechies 1992, 24).

The wavelet ψ is usually normalized to have unit energy: �ψ�2 =
�
∞

−∞
|ψ (t)|2 dt = 1. The

square integrability of ψ is a very mild decay condition; the wavelets used in practice have much

faster decay; typical behavior will be exponential decay or even compact support. For functions

with sufficient decay, it turns out that the admissibility condition (A.2) is equivalent to requiring

Ψ(0) =
�
∞

−∞
ψ (t) dt = 0. This means that the function ψ has to wiggle up and down the t−axis,

i.e. it must behave like a wave; this, together with the decaying property, justifies the choice of

the term wavelet (originally, in French, ondelette) to designate ψ.
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The Continuous Wavelet Transform

Starting with a mother wavelet ψ, a family ψs,τ of "wavelet daughters"can be obtained by simply

scaling ψ by s and translating it by τ

ψs,τ (t) :=
1

�
|s|
ψ

�
t− τ

s

�
, s, τ ∈ R, s 
= 0. (A.3)

The parameter s is a scaling or dilation factor that controls the length of the wavelet (the

factor 1/
�
|s| being introduced to guarantee preservation of the unit energy,

��ψs,τ
�� = 1) and τ

is a location parameter that indicates where the wavelet is centered. Scaling a wavelet simply

means stretching it (if |s| > 1), or compressing it (if |s| < 1).1

Given a function x (t) ∈ L2 (R) (a time-series), its continuous wavelet transform (CWT) with

respect to the wavelet ψ is a function Wx (s, τ ) obtained by projecting x (t) , in the L2 sense,

onto the over-complete family
�
ψs,τ

�
:

Wx (s, τ ) =
	
x, ψs,τ



=

�
∞

−∞

x (t)
1

�
|s|
ψ∗
�
t− τ

s

�
dt. (A.4)

When the wavelet ψ(t) is chosen as a complex-valued function, the wavelet transformWx(τ , s)

is also complex-valued. In this case, the transform can be separated into its real part, R(Wx),

and imaginary part, I(Wx), or in its amplitude, |Wx(τ , s)|, and phase, φx(τ , s) : Wx(τ , s) =

|Wx(τ , s)| eiφx(τ,s). The phase-angle φx(τ , s) of the complex number Wx(τ , s) can be obtained

from the formula:

φx(τ , s) = tan
−1

�ℑ (Wx(s, τ ))

ℜ (Wx(s, τ ))

�
, (A.5)

using the information on the signs of ℜ(Wx) and ℑ(Wx) to determine to which quadrant the

angle belongs to.

For real-valued wavelet functions, the imaginary part is constantly zero and the phase is,

therefore, undefined. Hence, in order to separate the phase and amplitude information of a

time-series, it is important to make use of complex wavelets. As Lilly and Olhede (2009) explain,

1Note that for negative s, the function is also reflected.
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analytic wavelets, i.e. wavelets ψ(t) satisfying Ψ(ξ) = 0, for ξ < 0, are ideal for the analysis of

oscillatory signals, since the continuous analytic wavelet transform provides an estimate of the

instantaneous amplitude and instantaneous phase of the signal in the vicinity of each time/scale

location (τ , s).2 The importance of the admissibility condition (A.2) comes from the fact that

it guarantees that it is possible to recover x (t) from its wavelet transform. When ψ is analytic

and x (t) is real, a reconstruction formula is given by

x (t) =
2

Cψ

�
∞

0

��
∞

−∞

R
�
Wx (s, τ)ψs,τ (t)


dτ

�
ds

s2
. (A.6)

Therefore, we can easily go from x (t) to its wavelet transform, and from the wavelet transform

back to x (t). Note that one can limit the integration over a range of scales, performing a band-

pass filtering of the original series. See Daubechies (1992, 27-28) or Kaiser (1994, 70-73) for more

details about analytic wavelets.

Localization Properties

Let the wavelet ψ be normalized so that �ψ� = 1. Also, assume that ψ and its Fourier transform

Ψ have sufficient decay to guarantee that the quantities defined below are all finite. We define

the center µt of ψ by

µt =

�
∞

−∞

t |ψ (t)|2 dt. (A.7)

In other words, the center of the wavelet is simply the mean of the probability distribution

obtained from |ψ (t)|2. As a measure of concentration of ψ around its center one usually takes

the standard deviation σt:

σt =

��
∞

−∞

(t− µt)
2 |ψ (t)|2 dt

� 1

2

. (A.8)

In a total similar manner, one can also define the center µξ and standard deviation σξ of the

Fourier transform Ψ(ξ) of ψ.

The interval [µt − σt, µt + σt] is the set where ψ attains its "most significant"values, whilst

2Note that an analytic function is necessarily complex.
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[µξ−σξ, µξ+σξ] plays the same role for Ψ(ξ) . The rectangle [µt − σt, µt + σt]×
�
µξ − σξ, µξ + σξ

�

in the (t, ξ)−plane is called the Heisenberg box or window in the time-frequency plane. We then

say that ψ is localized around the point
�
µt, µξ


of the time-frequency plane with uncertainty

given by σtσξ.

The uncertainty principle, first established by Heisenberg in the context of quantum mechan-

ics, gives a lower bound on the product of the standard deviations of position and momentum

for a system, implying that it is impossible to have a particle that has an arbitrarily well-defined

position and momentum simultaneously. In our context, the Heisenberg uncertainty principle

tells us that there is always a trade-off between localization in time and localization in frequency;

in particular, we cannot ask for a function to be, simultaneously, band and time limited. To be

more precise, the Heisenberg uncertainty principle establishes that the uncertainty is bounded

from below by the quantity 1/4π:

σtσξ ≥
1

4π
. (A.9)

If the mother wavelet ψ is centered at µt, has standard deviation σt and its wavelet transform

Ψ(ξ) is centered at µξ with a standard deviation σξ, then one can easily show that the daughter

wavelet ψτ,s will be centered at τ + sµt with standard deviation sσt, whilst its Fourier transform

Ψs,τ will have center
µξ
s

and standard deviation
σξ
s

.

From the Parseval relation, we know that Wx (s, τ ) =
	
x (t) , ψs,τ (t)



= �X (ξ) ,Ψs,τ (ξ)�.

Therefore, the continuous wavelet transform Wx(s, τ ) gives us local information within a time-

frequency window [τ + sµt − sσt, τ + sµt + sσt]×
�µξ
s
− σξ

s
,
µξ
s
+

σξ
s

�
. In particular, if ψ is chosen

so that µt = 0 and µξ = 1, then the window associated with ψτ,s becomes

[τ − sσt, τ + sσt]×
�
1

s
− σξ

s
,
1

s
+
σξ
s

�
(A.10)

In this case, the wavelet transform Wx (s, τ ) will give us information on x (t) for t near the instant

t = τ , with precision sσt, and information about X (ξ) for frequency values near the frequency

ξ = 1
s
, with precision

σξ
s
. Therefore, small/large values of s correspond to information about x (t)

in a fine/broad scale and, even with a constant area of the windows, A = 4σtσξ, their dimensions
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change according to the scale; the windows stretch for large values of s (broad scales s — low

frequencies ξ = 1/s) and compress for small values of s (fine scale s — high frequencies ξ = 1/s).

Figure A1 illustrates this major advantage afforded by the wavelet transform, when compared

to the Short Time Fourier Transform: its ability to perform natural local analysis of a time-series

in the sense that the length of wavelets varies endogenously. It stretches into a long wavelet

function to measure the low frequency movements; and it compresses into a short wavelet function

to measure the high frequency movements.

Figure A1: Time-frequency resolution

The Morlet Wavelet: Optimal Joint Time-Frequency Con-

centration

There are several types of wavelet functions available with different characteristics, such as Mor-

let, Paull, Cauchy, Mexican hat, Haar, Daubechies, etc. Since the wavelet coefficients Wx (s, τ)

contain combined information on both the function x (t) and the analyzing wavelet ψ (t), the

choice of the wavelet is an important aspect to be taken into account, which will depend on the

particular application one has in mind. To study cycles, it is important to select a wavelet whose
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corresponding transform will contain information on both amplitude and phase, and hence, a

progressive complex-valued wavelet is a natural choice (the advantage of using a progressive

wavelet has already been referred).

We will use the Morlet wavelet, proposed by Goupillaud, Grossman and Morlet (1984):

ψη (t) = π−
1

4

�
eiηt − e−

η2

2

�
e−

t2

2 . (A.11)

The term e−
η2

2 is introduced to guarantee the fulfillment of the admissibility condition; how-

ever, for η ≥ 5 this term becomes negligible. The simplified version

ψη (t) = π−
1

4eiηte−
t2

2 (A.12)

of (A.11) is normally used (and still referred to as a Morlet wavelet).

Figure A2: On the left: the Morlet wavelet ψ6 (t) – real part (thick line) and imaginary part (thin

line). On the right: its Fourier transform.

This wavelet has interesting characteristics. For η > 5, for all practical purposes, the wavelet

can be considered as analytic; see Foufoula-Georgiou and Kumar (1994).3 The wavelet (A.12)

is centered at the point
�
0, η

2π


of the time-frequency plane; hence, for the particular choice

η = 6, one has that the frequency center is µξ =
6
2π

and the relationship between the scale and

3We used η = 6.in all our computations.

7



frequency is simply ξ =
µξ
s
≈ 1

s
. Thanks to the clear inverse relation between scale and Fourier

frequency there is a one-to-one relation between scale and frequency and we will use both terms

interchangeably.4

It is simple to verify that the time standard deviation is σt = 1/
√
2 and the frequency standard

deviation is σξ = 1/
�
2π
√
2

. Therefore, the uncertainty of the corresponding Heisenberg box

attains the minimum possible value σtσξ =
1
4π
. In this sense, the Morlet wavelet has optimal

joint time-frequency concentration.

Transform of Finite Discrete Data

If one is dealing with a discrete time-series x = {xn, n = 0, . . . , T − 1} of T observations with

a uniform time step δt, which we can take as the unity (δt = 1), the integral in (A.4) has

to be discretized and is, therefore, replaced by a summation over the T time steps; also, it is

convenient, for computational efficiency, to compute the transform for T values of the parameter

τ , τ = mδt; m = 0, . . . , T − 1. In practice, naturally, the wavelet transform is computed only

for a selected set of scale values s ∈ {sk, k = 0, . . . , F − 1} (corresponding to a certain choice of

frequencies fk). Hence, our computed wavelet spectrum of the discrete-time series x will simply

be a F × T matrix Wx whose (k,m) element is given by

Wx(k,m) =
1√
sk

T−1�

n=0

xnψ
∗

�
(n−m)

1

sk

�
k = 0, . . . , F − 1, m = 0, . . . , T − 1. (A.13)

Although it is possible to calculate the wavelet transform using the above formula for each

value of k and m, one can also identify the computation for all the values of m simultaneously

as a simple convolution of two sequences; in this case, one can follow the standard procedure

and calculate this convolution as a simple product in the Fourier domain, using the Fast Fourier

Transform algorithm to go forth and back from time to spectral domain; this is the technique

4As Meyers, Kelly and O’Brien (1993) say,“for a general wavelet, the relation between scale and the more
common Fourier wavelength is not necessarily straightforward; for example, some wavelets are highly irregular
without any dominant periodic components. In those cases it is probably a meaningless exercise to find a relation
between the two disparate measures of distance. However, in the case of the Morlet wavelet, which is a periodic
wavelet enveloped by a Gaussian, it seems more reasonable.”
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prescribed by Torrence and Compo (1998).

Cone of Influence

As with other types of transforms, the CWT applied to a finite length time-series inevitably

suffers from border distortions; this is due to the fact that the values of the transform at the

beginning and the end of the time-series are always incorrectly computed, in the sense that they

involve missing values of the series which are then artificially prescribed. When using the formula

(A.13), a periodization of the data is assumed. However, before implementing formula (A.13),

we pad the series with zeros, to avoid wrapping. Because of this zero padding, regions afected

by edge effects will under estimate the wavelet power. The region in which the transform suffers

from these edge effects is called the cone of influence (COI) and, therefore, its results have to be

interpreted carefully.

Wavelet Power Spectrum

In view of the energy preservation formula, and in analogy with the terminology used in the

Fourier case, we simply define the (local) wavelet power spectrum as

(WPS)x(s, τ) = |Wx(s, τ)|2 , (A.14)

which gives us a measure of the local variance.

The seminal paper by Torrence and Compo (1998) is one of the first to give guidance for

conducting significance tests for the wavelet power. By using a large number of Monte-Carlo

simulations, they derived empirical distributions for the wavelet power corresponding to an AR(0)

or a stationary AR(1) process with a certain background Fourier power spectrum (Pξ), under

the null, the corresponding distribution for the local wavelet power spectrum,

D

�
|W x

n (s)|2
σ2x

< p

�

=
1

2
Pξχ

2
v,
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at each time n and scale s. The value of Pξ is the mean spectrum at the Fourier frequency ξ

that corresponds to the wavelet scale s – in our case s ≈ 1
ξ
, – and v is equal to 1 or 2, for real

or complex wavelets respectively. For more general processes, like an ARMA process, one has to

rely on Bootstrap techniques or Monte Carlo Simulations.

Sometimes the wavelet power spectrum is averaged over time for comparison with classical

spectral methods. When the average is taken over all times, we obtain the so-called global wavelet

power spectrum:

GWPSx(s) =

�
|Wx(τ , s)|2 dτ . (A.15)

Cross-Wavelets

Cross-Wavelet Power and Phase-Difference

The cross-wavelet transform of two time-series, x(t) and y(t), first introduced by Hudgins, Friehe

and Mayer (1993), is simply defined as

Wxy (s, τ ) = Wx (s, τ)W
∗

y (s, τ ) , (A.16)

where Wx and Wy are the wavelet transforms of x and y, respectively. The cross-wavelet power

is given by |Wxy|. While we can interpret the wavelet power spectrum as depicting the local

variance of a time-series, the cross-wavelet power of two time-series depicts the local covariance

between these time-series at each scale and frequency. Therefore, cross-wavelet power gives us a

quantified indication of the similarity of power between two time-series.

Torrence and Compo (1998) derived the cross-wavelet distribution assuming that the two

time-series have Fourier Spectra P xξ and P yξ .Under the null, the cross-wavelet distribution is

given by

D

���WxW
∗

y

��

σxσy
< p

�

=
Zv (p)

v

�
P xξ P

y
ξ ,

where Zv (p) is the confidence level associated with the probability p for a pdf defined by the

square root of the product of two χ2 distributions. For more general data generating processes
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one has to rely on Monte Carlo simulations.

The phase difference, φx,y(s, τ ), can be computed from the cross-wavelet transform, by using

the formula

φx,y(s, τ ) = tan
−1

�ℑ (Wxy(s, τ ))

ℜ (Wxy(s, τ ))

�
. (A.17)

It is possible to show that φxy = φx − φy,
5 justifying its name. A phase difference of zero

indicates that the time series move together at the specified time-frequency; if φxy ∈ (0, π2 ), then

the series move in phase, but the time-series x leads y; if φxy ∈ (−π
2
, 0), then it is y that is

leading; a Phase-Difference of π (or −π) indicates an anti-phase relation; if φxy ∈ (π2 , π), then y

is leading; time-series x is leading if φxy ∈ (−π,−π
2
).

With the Phase-Difference, one can also calculate the Instantaneous Time-Lag between the

two time-series x and y:

(∆T )xy(τ , s) =
φxy(τ , s)

2πξ(τ)
, (A.18)

where ξ(τ ) is the frequency that corresponds to the scale s.

Wavelet Coherency

As in the Fourier spectral approaches, wavelet coherency can be defined as the ratio of the

cross-spectrum to the product of the spectra of both series, and can be thought of as the local

correlation, both in time and frequency, between two time-series. The wavelet coherency between

two time-series, x(t) and y(t), is defined as follows:

Rxy (s, τ ) =
|S (Wxy (s, τ))|

|S (Wxx(s, τ ))|
1

2 |S (Wyy(s, τ))|
1

2

, (A.19)

where S denotes a smoothing operator in both time and scale. Smoothing is necessary. Without

that step, coherency is identically one at all scales and times. Smoothing is achieved by a

convolution in time and scale. The time convolution is done with a Gaussian and the scale

convolution is performed by a rectangular window (see Cazelles et al. 2007 for details). As in the

5To be more precise, the above relation holds after we convert φx − φy into an angle in the interval
[−π, π].
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case of the traditional (Fourier) coherency, or the (absolute value of the) correlation coefficient,

Wavelet Coherency satisfies the inequality 0 ≤ Rxy(τ , s) ≤ 1.

Theoretical distributions for wavelet coherency have recently been derived, by Ge (2008), but

only when two stationary Gaussian white noises processes are assumed and we use the Morlet

wavelet; for more general processes, one again has to rely on Monte Carlo simulation methods.

The Analytic Wavelets Toolbox

Due to its increasing popularity and applicability into a wide range of fields, the amount of

wavelet-related software has been growing. Some commercial scientific computing software, such

as Matlab, now integrate wavelet analysis packages.6 The reader can find and freely download

our toolbox, which runs in MatLab, in http://sites.google.com/site/aguiarconraria/joanasoares-

wavelets.

Our toolbox was written with social science applications in mind. To our knowledge, ours

is the first toolbox that performs multivariate wavelet analysis, allowing for the possibility of

computing multiple and partial wavelet coherencies as well as partial phase-differences. Our

toolbox is divided into two folders:

1. Functions — containing all the Matlab functions. This has two sub-folders:

• Auxiliary — containing some auxiliary functions to, e.g. generate surrogate series or

compute Fourier spectra; it also contains a function to compute measures associated

with generalized Morse wavelets.

• WaveletTransforms — containing functions to compute the (analytic) wavelet trans-

form, cross-wavelet transform, wavelet coherency, wavelet phase-difference and time-

lag, multiple coherency, partial coherency and partial phase-difference.

6E.g. Math Work’s Wavelet Toolbox for Matlab is one such package. The choice of wavelets is large. The
ability to compute the wavelet coherence and cross spectrum was only recently added to the toolbox (Wavelet
Toolbox 4.6, released in September 2010). However this toolbox still does not include significance testing, which
is a major shortcoming, neither it includes the possibility of performing multivariate wavelet analysis.
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2. Examples — containing Matlab scripts to generate the pictures associated with each ex-

ample and application of this paper (and other papers as well). Therefore, it is easy for a

research to replicate our results and, then, adjust our codes to his/her own research.

When implementing the transforms, some choices have, naturally, to be made. The most

important choice is the wavelet choice. To our knowledge, every economics application of the

CWT has made use of the Morlet wavelet. This is our default. Our toolbox also allows for the use

of the Generalized Morse Wavelets, which encompass the most popular analytical wavelets (such

as the Paul wavelet). Our advice is to use the Morlet. The GMWs can be used for robustness

checks. The second most important choice is about significance tests. In our toolbox, the tests

of significance are always based on Monte Carlo simulations. The simulations use two different

types of methods to construct surrogate series: (1) fitting an ARMA(p, q) model and building new

samples by bootstrap or (2) fitting an ARMA(p, q) model and construct new samples by drawing

errors from a Gaussian distribution. The ’Econometrics toolbox’ is necessary to perform these

tests.7 Our experience tells us that either ARMA(1,0) or ARMA(1,1) fit the data well enough.8

The other options are less important. For example, in order to convert frequencies into

periods, one has to declare the periodicity of the data. When computing the wavelet coherency,

smoothing is necessary, because, otherwise, coherency would be identically one at all scales and

times.9 Smoothing is done by convolution with window functions in time and in frequency. By

default, we use the Bartlett window. The other options – Hamming, Hanning, Blackman, etc –

require the use of the Signal Processing toolbox. Our experience tells us that the final pictures

are quite insensible to this choice.

7The user that does not have the Econometrics toolbox can perform significance tests by choosing an
ARMA(p, 0) model with bootstrap. In this case, the model is estimated by OLS and the code is self-contained.

8One has to avoid overfitting, otherwise the null may be almost impossible to reject.
9The same happens with the Fourier coherency.
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