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Abstract

The asymptotic distributions of Augmented-Dickey-Fuller (ADF) unit root test statis-
tics for autoregressive processes with a unit or near-unit root are derived in the presence
of multiple stochastic level shifts of large size. The distributions depend on a Brown-
ian motion and a Poisson-type jump process. The latter is related to the occurrence of
level shifts, and induces for tests based on standard critical values power losses increasing
rapidly with the number and the magnitude of the shifts. A new approach to unit root
testing is suggested which does not require to know either the location or the number
of level shifts. It is proposed to remove possible shifts from a time series by weighting
each of its increments according to how likely it is, with respect to an ad hoc postulated
distribution, a shift to have occurred in the respective period. Hence, no explicit decision
rule on the occurrence of shifts is required. It is proved that if the number of level shifts
is bounded in probability, the proposed test statistics have pivotal limiting distributions
coinciding with those of the corresponding ADF statistics under standard conditions. A
Monte Carlo experiment shows that, despite their generality, the new tests perform well
in small samples.

Keywords: Unit roots, level shifts, Poisson process, random fixed point.

JEL Classifications: C30, C32.

1 Introduction

Since the seminal works by Perron (1989, 1990) it is well known that the performance of unit
root tests is largely affected by the presence of structural level shifts which, if neglected, tend
to inflate the evidence in favor of a unit root. Many researchers have focused on whether
economic time series have unit roots or, conversely, are stationary around a single level shift.
A major debate in this strand of the literature has been on whether the possible shift date
should be regarded as known or unknown. Among others, unit root tests robust to a level
shift at a known date have been developed by Perron (1989, 1990), Amsler and Lee (1995),
Saikkonen and Lütkepohl (2001), Lanne et al.(2002). Tests which allow for unknown shift
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dates have been initially proposed by Banerjee et al. (1992), Zivot and Andrews (1992) and
subsequently by Leybourne et al. (1998), Saikkonen and Lütkepohl (2002), Lütkepohl et al.
(2004), among others.

Few attempts have been made to robustify unit root tests in the presence of multiple
level shifts. Lumsdaine and Papell (1997) generalize the tests proposed by Banerjee et al.
(1992) by allowing for two level shifts at unknown dates. Unfortunately, although there is
little justification for fixing the number of shifts to one or two a priori (cf. Lumsdaine and
Papell, 1997, p.218), their procedure can hardly be generalized to a larger number of shifts.
Recently, Kapetanios (2005) has shown how tests for unit roots can be obtained by estimating
the shift dates using Bai and Perron’s (1998) approach, and running a properly augmented
Dickey—Fuller (ADF) regression; the reference critical values depend on the shift dates and
the power of the tests decline as the maximum number of allowed shifts increases.

In this paper we take a novel approach to unit root testing in the presence of multiple
level shifts. Specifically, we consider a rather general autoregressive data generating process
with additive level shifts having the following features: (i) level shifts occur randomly over
time; (ii) the number of shifts is unknown, and only needs to bounded in probability; (iii)
shifts need not occur independently over time, and in particular, may cluster together; (iv)
although in the basic setup shifts are exogenous, forms of dependence with the shocks driving
the ordinary autoregressive dynamics can be allowed without affecting the results; (v) shift
sizes are random and of larger magnitude order than the shocks driving the autoregressive
dynamics. Note that assumptions (i)—(v) are quite general and differ in several respects from
what has been previously studied in the literature. For instance, they do not require from the
investigator any a priory knowledge about either the number or the location of shifts. The
restrictions on the sequence of shift dates are mild, the main one being of technical nature,
and requiring the total number of shifts not to grow with the sample size. This is in contrast
with a strand of the literature where the number of shifts diverges to infinity as the number
of observations increases (cf. Balke and Fomby, 1991a, 1991b; Franses and Haldrup, 1994;
Nelson et al., 2001), but we adopt it since it preserves in the limit the distinction between
ordinary shocks and level shifts.

Despite the generality of (i)—(v), we are able to propose a family of ADF type tests
with null asymptotic distribution identical to that of standard ADF tests under standard
conditions, and hence, without the need for new tables of critical values. Furthermore, the
new tests have the same asymptotic local power function as standard ADF tests under no
level shifts.

Similarly to Amsler and Lee (1995) and Saikkonen and Lütkepohl (2002), the logic of the
tests is to remove from the original time series, say Xt, the level shifts which might have
occurred over a given sample, and then to apply standard ADF tests to the obtained ‘de-
jumped’ time series, say X̃δ

t . In order to remove the shifts, for each observation we suggest
to compute a pseudo-probability δ̃t (with respect to an ad hoc probability measure) that a
level shift has occurred at time t, given the data. Then, shifts are removed by defining the
‘de-jumped’ time series X̃δ

t as X̃
δ
t := Xt −

Pt
s=1 δ̃s∆Xs. The unit root hypothesis is tested

by running standard ADF tests on X̃δ
t , which are found to have the same (pivotal) limiting

distributions as standard ADF tests under no level shifts — a property which holds both under
the null hypothesis and under local alternatives.

The idea of weighting each observation with a (pseudo) probability is present in the work
of Franses and Lucas (1998) on the robustification of likelihood-based cointegration tests to
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innovational outliers. Despite the similarity, we depart from a rather different statistical
model, which gives rise to estimators and tests with different asymptotic properties. For
example, although not required for the definition of the unit root tests, in our framework
decision rules for consistent estimation of shift dates are feasible.

To evaluate the relevance of the asymptotic theory developed here, the agreement of its
predictions with well-known finite-sample evidence is worth to be noted. Specifically, we
show that if level shifts are neglected in testing, the asymptotic local power function of the
ADF tests can be far below the power function under no level shifts. This is consistent with
widely documented findings that in finite samples unit root tests lose power in the presence
of level shifts.

A specificity of our probability analysis is that it relies on random fixed point theory.
Although it is a common practice to compute parameter estimates as fixed points of iterative
algorithms, estimators themselves are rarely studied as fixed points; Aitchison and Silvey
(1958) is a notable exception. By choosing a fixed-point approach, we can ensure that the
object under analytical study is the same as the object which is actually computed - an
obvious requirement that may sometimes be hard to check.1

The paper is organized as follows. In Section 2 we present the reference data generating
process. We also discuss the asymptotic distributions of standard unit root tests in the
presence of level shifts occurring independently over time and we show that the distribution
of the ADF statistics are characterized by a Poisson-type jump process, both under the null
and under local alternatives. In Section 3 the proposed tests for unit roots in the presence of
level shifts and their asymptotic properties are introduced and discussed. A basic version of
the tests is reported in Section 3.2, while a refined version with better finite sample properties
is discussed in Section 3.3. The small sample properties of the new tests are analyzed through
a set of Monte Carlo simulations in Section 4. Section 5 concludes. All proofs are collected

in the Appendix. The following notation is used: ‘
w→’ denotes weak convergence and ‘ P→’

convergence in P -probability respectively; I(·) is the indicator function; Ik and 1k are the
k × k identity matrix and the k × 1 vector of ones. With ‘x := y’ (‘x =: y’) we indicate
that x is defined by y (y is defined by x), and b·c signifies the largest integer not greater
than its argument. With D[0,1] we denote the space of cadlag functions on [0,1], endowed
with the Skorohod topology. Finally, for a scalar sequence Zt we define the related sequences
∇Zt := (∆Zt, ...,∆Zt−k+1)0 and Zt := (Zt, (∇Zt)0)0.

2 Model and preliminary results

We are interested in testing the unit root null hypothesis H0 : α = 1 against local alternatives
Hc : α = 1− c/T in the following additive level-shift model for the observable variable Xt:

Xt = ϕ0Zt + Yt + µt, t = −k, ..., T
Yt = αYt−1 + ut,
ut =

Pk
i=1 γiut−i + εt,

(1)

where Yt is an unobservable autoregressive process, Zt is a vector of deterministic terms (e.g.
a constant and a linear trend) and µt denotes an unobservable level-shift component. The

1For example, numerical techniques may deliver a local maximum of a criterion function, whereas the
asymptotic analysis is carried out for a global one.
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following assumption is maintained:

AssumptionM. (a) the roots of Γ (z) := 1−Pk
i=1 γiz

i have modulus greater than 1; (b) εt
are IID

¡
0,σ2ε

¢
and E |ε1|r <∞ for some r ≥ 4.

The assumption prevents Yt from being I(2) or seasonally integrated, and ensures that the so-
called long-run variance, σ2 := σ2εΓ (1)

−2 hereafter, is well-defined. The novelty of the paper
lies in the way µt is specified and dealt with. To focus the exposition on this aspect, we
regard the lag order k as known, and in the entire analytical part we consider the special case
ϕ = 0. De-meaning and de-trending will be addressed in Section 4. Pre-sample values are
set to µ−k, ..., µ0 = 0, Y−k = OP (1), and (u−k+1, ..., u0)0 is given the stationary distribution
induced by the difference equation ut =

Pk
i=1 γiut−i + εt.

2

In the absence of level shifts and deterministic terms, Xt = Yt holds for all t; in this
case, if α̂ and γ̂ denote respectively the OLS estimators of α and γ := (γ1, ..., γk)

0 in the
regression Xt = αXt−1+γ0∇Xt−1+ errort, the well-known ADF unit root tests build on the
test statistics ADFbα := T (α̂− 1) /Γ̂ (1) and ADFt := (α̂− 1) /s (α̂), where Γ̂ (1) := 1− 10kγ̂
and s (α̂) is the (OLS) standard error of α̂. It is known (see, e.g., Chang and Park, 2002)
that under AssumptionM and for α = 1− c/T , α̂ and γ̂ are consistent and, as T →∞,

ADFbα w→
R 1
0 Bc (s) dBc (s)R 1
0 Bc (s)

2 ds
, ADFt

w→
R 1
0 Bc (s) dBc (s)

(
R 1
0 Bc (s)

2 ds)1/2
, (2)

where Bc (s) :=
R s
0 e

−c(s−z)dB (z) is an Ornstein-Uhlenbeck process on [0, 1], and B (·) is a
standard Brownian motion. Under the null hypothesis that c = 0, Bc (·) = B (·) and the
distributions in (2) are the so-called univariate Dickey-Fuller distributions.

Now, suppose that the level-shift component µt is constant except for a few shifts. The
simplest example is the single level shift model, with the level-shift component changing from
µ0 to µ1 at time t

∗ (cf. Perron, 1989; Amsler and Lee, 1995; Saikkonen and Lütkepohl, 2002,
p.316). This model corresponds to µt being generated as

µt := µ0 + θ∗I (t ≥ t∗) , θ∗ := µ1 − µ0, (3)

with θ∗ the magnitude of the level shift, or equivalently, as

µt :=
tX
s=1

δsθ
∗, δs := I (s = t∗) , (4)

with δs a dummy variable equal to unity at the time t
∗ of the level shift. Rather than assuming

a single deterministic level shift, in this paper we consider shifts that occur randomly over
time and have random magnitude. This is achieved by specifying the level-shift component
as µt :=

Pt
s=1 δsθs, where {δt} is a rather general unobservable sequence of binary variables

indicating the occurrences of shifts, and {θt} is the (random) sequence of shift sizes. The
number of level shifts occurring up to time t is given by Nt :=

Pt
s=1 δs, with NT denoting the

total number of level shifts. The following assumption on the properties of the level shifts is
required to hold jointly with AssumptionM above.

2The results of the paper remain valid under the more general specification u0, ..., u−k+1 = OP (1) .
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Assumption S. (a) NT is bounded in probability, unconditionally and conditionally on
NT ≥ 1; (b) θt = T 1/2ηt, where ηt and η−1t are OP (1) sequences; (c) δt is independent
of Y−k, (u1−k, ..., u0)0 and (εs, ηs) for all t, s ≤ T .

Several points are worth to note.

Remark 2.1. Formally, since (δt, θt) (as well as the α of (1)) depend on T , we are considering
a triangular array of the form {XT,t = YT,t+ µT,t; t = −k,−k+1, ..., T, T = 1, 2, ...}. Unless
differently specified, in order to keep notation simple, we drop the ‘T ’ subscript.

Remark 2.2. Assumption S generalizes the simple single shift model (3)—(4) in a number of
directions. Specifically, it allows for multiple level shifts, whose number NT only needs to be
bounded in probability. This is a stochastic analogue of the deterministic setup in, among
others, Perron (1989), where processes with a fixed number of structural breaks are studied.
It is in contrast with the setup of e.g. Balke and Fomby (1991a,1991b) and Franses and
Haldrup (1994), who let the number of level shifts diverge together with the sample size.

Remark 2.3. Our model can equivalently be expressed in the multiple-break format (see e.g.
Bai and Perron, 1998)

Xt = Yt + µ
(j), t = Tj−1 + 1, ..., Tj , j = 1, ...,m+ 1,

where the number of breaks m equals the number of level shifts (m := NT ) and the break
points Tj are obtained as Tj := max{t ∈ {1, ..., T} : Nt < j}, with T0 := −k, Tm+1 := T and
µ(j) := µTj .

Remark 2.4. Assumption S(b) relates explicitly the magnitude of the level shifts to the
sample size; this assumption is not new in the literature, cf. e.g. Leybourne and Newbold
(2000a,2000b), Doornik et al. (1998) and Perron (1989, p. 1372). Specifically, the T 1/2 scale
for the size of the level shifts — which is the natural choice as it corresponds to the magnitude
order of the unconditional standard deviation of Yt under the parametrization α = 1 − c/T
— implies that level shifts have a non-negligible effect on the asymptotic distribution of ADF
statistics: a desirable property given the broad evidence of a substantial effect on their finite-
sample distributions. Note also that the same rate has been used by Müller and Elliott (2003)
to model the initial observation of processes with unit roots near unity.

Remark 2.5. Assumption S(c) specifies the occurrence of level shifts as exogenous. This
is not a strictly necessary assumption for the results of the paper. Thus, if P denotes the
sequence of probability measures induced by model (1) under AssumptionsM and S, and if
P1 is P conditional on the occurrence of at least one level shift, it holds that maxt≤T |δtεt| =:
maxt:δt=1 |εt|, maxt:δt=1 |∆Yt|, maxt:δt=1 |ηt| and maxt:δt=1 |η−1t | are bounded in P and P1
probability. What matters in the proofs of the main results is this boundedness, and as long
as a relaxation of S(c) (such as the case of endogenous level shifts) does not affect it, all the
results given in this paper continue to hold.3

Remark 2.6. Assumption S imposes no restrictions on the dependence structure of δt. In
particular, since δt does not need to be independent over time, it allows for clusters of level
shifts.

3To see that some kinds of dependence between δt and (εs, ηs) violate boundedness, consider the extreme
case δt := I {|εt| = maxs≤T |εs|}, where NT = 1 a.s. but maxt:δt=1 |εt| = maxt≤T |εt| is, in general, not
bounded in probability.

5



In the presence of level shifts satisfying Assumption S, the asymptotic distributions of the
ADF statistics provided in (2) is no longer valid. Under the complete generality of the
assumption, the test statistics need not even to have weak limits. To be able to describe their
asymptotic behavior in terms of functionals of a stochastic process, we specialize to the case
of ηt = η and δt IID with P (δt = 1) = λ/T, the last in order to bound the number of level
shifts NT as T diverges. Asymptotics for the ADF statistics are given in the next theorem,
where Pλ (·) denotes a Poisson process with intensity λ. The process Pλ (·) is defined on [0,1]
and is constant apart from finitely many jumps equal to unity.

Theorem 1 Under Assumptions M and S, if α = 1 − c/T with c ≥ 0, ηt = η and δt are
IID with P (δt = 1) = λ/T , then, as T →∞:

1

T 1/2
XbTsc

w→ σHc (s) , Hc (s) := Bc (s) +
η

σ
Pλ (s) , s ∈ [0, 1] , (5)

where convergence is on D [0, 1], and Bc (·) is an Ornstein-Uhlenbeck process independent of
Pλ (·). Moreover,

ADFbα w→
R 1
0 Hc (s) dHc (s) + ω0R 1

0 Hc (s)
2 ds

, ADFt
w→
R 1
0 Hc (s) dHc (s) + ω0

(ω1
R 1
0 Hc (s)

2 ds)1/2
, (6)

where ω0 and ω1 depend on η2Pλ (1) /σ
2, and equal respectively 0 and 1 when Pλ (1) = 0. In

the special case k = 0, ω0 = 0 and ω1 = 1 + η2Pλ (1) /σ
2
ε.
4

Remark 2.7. The most prominent feature of Theorem 1 is that, in the presence of level shifts,
the limiting distributions of the ADF statistics depend on a discontinuous process. This
distinguishes them from the usual Dickey-Fuller distributions (2) arising in the case of no
level shifts. The difference in the asymptotic distributions agrees with the different finite-
sample performance of ADF tests in the two cases, most notably under local alternatives,
where level shifts lead to substantial power losses. The Monte Carlo simulations in Section 4
illustrate this aspect.

Remark 2.8. Intuitively, distributions (6) obtain because in the ADF regression: (i) Xt−1
appears as a regressor instead of Yt−1, and hence, in (6) Hc (·) appears as integrand instead
of Bc (·); (ii) Xt appears on the left-side of the ADF regression instead of Yt, and hence, in
(6) Hc (·) appears as integrator instead of Bc (·); (iii) the lagged differences of Xt appear as
regressors instead of those of Yt, which leads to inconsistent estimation of γ, and gives rise
to the term ω0 in (6). The term ω1 is due to the inconsistent estimation of both σ2ε and γ.

Remark 2.9. To elaborate on the terms ω0 and ω1, consider instead of (1) the following
‘innovational’ specification: Xt = Yt, Yt = αYt−1 + ut and ut =

Pk
i=1 γiut−1 + εt+ δtθt. Here

δtθt generate level shifts in Xt under the null hypothesis α = 1. A crucial difference from
(1) is that εt and δtθt feed into Xt via the same dynamics. As a consequence, γ is estimated
consistently, and the asymptotic distributions of the ADF statistics could be shown to be
given for any k by (6) with ω0 = 0 and ω1 = 1 + η2Pλ (1) /σ

2
ε. In this case the term ω1 is

entirely due to the inconsistent estimation of σ2ε. The difference from the general expressions

4The expressions for ω0 and ω1 for arbitrary k are given in the Appendix.
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(6) sheds light on why additive and innovational shifts have different effects on finite-sample
testing (see, e.g., Nielsen, 2004).

Remark 2.10. The importance of the Poisson component in the limiting distributions of
Theorem 1 depends on the size of the level shifts relative to the long run variance of the
errors (through η/σ) as well as on the occurrence probability of level shifts. When the level
shifts are small in size, that is η/σ is close to zero, the asymptotic distributions of Theorem 1
are close to the usual Dickey-Fuller type distributions. Conversely, when the shifts are large,
conditionally on NT > 0 (i.e., at least one level shift occurs), the Poisson component becomes
the dominant one.

Remark 2.11. In Theorem 1 it is imposed that the possible level shifts all have the same
size η. A more general assumption, which still allows to obtain asymptotic distributions in
terms of functionals of a stochastic process, is that the shift sizes ηt are IID. In this case
the results of the theorem hold provided that ηPλ (·) is replaced by the compound Poisson
process Cλ (·) :=

PPλ(·)
i=1 ηi (if ηt = η for all t, Cλ (·) = ηPλ (·)), and η2Pλ (1) is replaced byPPλ(·)

i=1 η2i , the quadratic variation of Cλ (·) on [0, 1].

3 Tests which account for the level shifts

3.1 Overview

Given the conclusion of Theorem 1 that, in the presence of level shifts, the ADF test statistics
based on the observed time series Xt do not have the usual asymptotic distributions (2), in
this section we propose variants of these statistics which do have (2) as their asymptotic
distributions. As a consequence, two powerful results hold: on the one hand, standard tables
of asymptotic critical values (see e.g. Fuller, 1976, for the case of no deterministics or OLS-
based detrended data; Ng and Perron, 2001, for pseudo-GLS detrended data5) can be used
for testing the unit root null hypothesis; on the other hand, whatever the number and the size
of the shifts are, the new tests have the same asymptotic power function as the corresponding
ADF tests in the standard, no-shift case.

Recall that, under Assumption M, the asymptotic distributions of the ADF statistics
from the regression Yt = αYt−1 + γ0∇Yt−1 + errort are as given in (2), where Yt = Xt − µt
can be thought of as obtained form Xt by removing the level shifts. Since µt and Yt are
unobservable, this regression is not feasible empirically. Instead, we propose to conduct ADF
tests on a process obtained by subtracting from Xt an estimator of µt. The idea is related to
Saikkonen and Lütkepohl (2002), who suggest to adjust the original time series by removing
the deterministic component, including possible (deterministic) level shifts. Since in our case
µt is a random jump process, our procedure will be referred to as ‘de-jumping’ in what follows.

If the δt’s were observable, de-jumping could be based on approximating µt by µ̂t :=Pt
s=1 δs∆Xs = µt+

Pt
s=1 δs∆Ys. The approximation error µ̂t−µt is bounded in probability

according to Lemma 7 in the Appendix, while µt has stochastic order of magnitude T
1/2. This

difference turns out to be sufficient for the ADF statistics based on the de-jumped process
Xδ
t := Xt −

Pt
s=1 δs∆Xs to have asymptotic distributions (2). In the case of unobservable

δt we imitate the above de-jumping procedure by estimating δt. The starting point is to
recognize that the distribution of ∆Xt is a mixture, with mixing variable δt and mixture

5For the latter case the conclusion is based exclusively on Monte Carlo evidence.
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components6 the distributions of∆Yt (δt = 0) and∆Yt+θt (δt = 1). Therefore, estimating the
shift indicators δt is equivalent to classifying the observable increments ∆Xt into such equal
to ∆Yt and such contaminated by θt. Since under Assumption S the mixture components
have different orders of magnitude, they are ‘well-separated’ (cf. Titterington et al., 1985)
and consistent classification is possible.

Our proposed estimator δ̃t of δt is the conditional expectation of δt with respect to an ad
hoc postulated distribution. This approach does not require an explicit decision rule about
when level shifts have occurred.7 Instead, each observation is weighted according to how
likely it is, given the data and the postulated distribution, a level shift to have occurred in
the corresponding period.

Two estimators of δt are discussed in the following subsections, leading to ADF-type tests
with identical asymptotic distributions. Both tests rely on an ADF regression for a de-jumped
series X̃δ

t := Xt−
Pt
s=1 δ̃s∆Xs. The first test uses an estimator of δt based on the observable

increments ∆Xt = ∆Yt + θtδt. The second one exploits the fact that εt and θtδt are better
separated than ∆Yt and θtδt (since εt has smaller variance than ∆Yt), and rests on the joint
estimation of δt and εt + θtδt; furthermore, it needs as an input the estimator of δt based on
∆Xt. The small sample properties of both tests are discussed in Section 4.

Some notation related to de-jumping is now introduced. For a vector d := (d1, ..., dT )
0,

the process Xt de-jumped with weights d is denoted by X
d
t := Xt −

Pt
s=1 ds∆Xs, t ≥ 1, and

Xd
t := Xt, t = −k, ..., 0. According to the notation introduced in Section 1, we let ∇Xdt :=

(∆Xd
t , ...,∆X

d
t )
0 and Xdt := (Xd

t , (∇Xdt )0)0. The processes Xdt (as well as Yt) sometimes
appear normalized by the diagonal (k + 1)× (k + 1) matrix AT = diag(T−1/2, 1, ..., 1).

3.2 Rough de-jumping

3.2.1 Definitions of estimators and unit root tests

The definitions are inspired by the random level shifts specification from Theorem 1 and
Remark 2.11; nevertheless, all subsequent results are obtained in the more general setup of
Assumption S. For the purposes of the definition, pretend that the ∆Xt’s are independent
draws from a mixture of a Student t (ν) distribution re-scaled with some σ > 0, and another

t (ν) distribution re-scaled with
¡
σ2 + Tθ2

¢1/2
, with mixture weights 1−λ/T and λ/T respec-

tively, in agreement with Assumption S(a). The quasi-likelihood function for λ, regarding σ2
and θ2 as known, is

QT
t=1

µ
λ

T
φν(∆Xt;σ

2 + Tθ2) + (1− λ

T
)φν(∆Xt;σ

2)

¶
, (7)

where φν
¡
e; a2

¢
is the density of a · t (ν). The QML estimator of λ is easily seen to satisfy

the equation

λ =
TX
t=1

δ̃t (ζ) , ζ := (λ,σ
2, θ2)0, (8)

6Although we write as if the two component distributions are the same for all t, in general they constitute
a family indexed by t (e.g. ηt does not need to be identically distributed over time).

7Nevertheless, as it will be shown later, our approach allows for consistent estimation of shift dates as a
by-product.
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with

δ̃t (ζ) :=
λ

T

"
λ

T
+

µ
1− λ

T

¶
φν
¡
∆Xt;σ

2
¢

φν
¡
∆Xt;σ2 + Tθ

2
¢#−1 , (9)

the latter corresponding to the expectation of δt conditional on the data; that is, δ̃t (ζ) =
E(δt| {∆Xs}Ts=1) = E(δt|∆Xt), with E(·| {∆Xs}Ts=1) denoting expectation under the adopted
pseudo distribution of {∆Xs}Ts=1 and conditional on the data.

From (8) it follows that, for known σ2 and θ2, the QML estimator of λ is a fixed point of
the mapping λ → PT

t=1 δ̃t (ζ). Such a fixed point can sometimes be computed by iterating
the mapping until convergence; this is a simple instance of the Expectation-Maximization
algorithm (Dempster et al., 1977), with δ̃t (ζ) computed at the expectation step, and their
sum λ at the maximization step. Upon convergence, the estimate of λ can be inserted into
(9), thus yielding the estimates of δt needed to eliminate the level shifts from the original
time series.

In general δ̃t (ζ) is not the true conditional expectation of δt for any choice of ζ, but
λ, θ2 and σ2 can still be thought of as related to the number of level shifts NT and to
the squared magnitude of the draws from the mixture components, T−1

PT
t=1 δt∆X

2
t and

T−1
PT
t=1 (1− δt)∆X

2
t . Thus, to obtain an estimator of δt based on (9), we insert for ζ an

estimator of (NT , T
−1PT

t=1 δt∆X
2
t , T

−1PT
t=1(1 − δt)∆X

2
t ). Namely, we define the random

mapping ΦT (ζ) =
¡
Φλ
T (ζ) ,Φ

θ
T (ζ) ,Φ

σ
T (ζ)

¢0
whose components are given as follows:

Φλ
T (ζ) =

TX
t=1

δ̃t (ζ) , Φ
θ
T (ζ) = T

−1
TX
t=1

δ̃t (ζ)∆X
2
t , Φ

σ
T (ζ) = T

−1
TX
t=1

(1− δ̃t (ζ))∆X
2
t , (10)

and then insert into (9) a random fixed point ζ̃T of this mapping.
Once ζ̃T has been found, level shifts are eliminated from Xt by computing the de-jumped

time series X̃δ
t := Xt −

Pt
s=1 δ̃s(ζ̃T )∆Xs. Then, the unit root hypothesis can be tested by

running standard ADF tests, henceforth ADF δbα and ADF δ
t , based on the auxiliary ADF

regression X̃δ
t = α̃X̃δ

t−1 + γ̃0∇X̃δ
t−1 + errort. The logic behind this approach is that if δ̃t(ζ̃T )

estimate δt consistently at an appropriate rate, then X̃
δ
t will be sufficiently close to Yt for

the ADF statistics based on X̃δ
t to be close to those based on the unobservable Yt, the latter

having the usual Dickey-Fuller type distribution. The asymptotic properties of this procedure
are discussed in the next subsection.

Remark 3.1. The definition of ΦT in (10) is not the only possible one, but among those
capturing the meaning of ζ, it is a rather simple one. A natural alternative is to maximize
the quasi-likelihood function (7) with respect to ζ, which gives for θ2 and σ2 the equations
θ2 = ν+1

ν Φ
θ
T (ζ)− T−1σ2 and σ2 = ν+1

ν Φ
σ
T (ζ). Ours obtain by dropping

ν+1
ν and T−1σ2.

3.2.2 Asymptotic results

We start this section with a theorem about existence, uniqueness and asymptotics for a fixed
point ζ̃T of the mapping ΦT , such that δ̃t(ζ̃T ) are consistent for δt uniformly in t.

8 The
theorem also ensures that ζ̃T can be computed by iterating ΦT until convergence.

8It is immediate that ΦT (ζ) has a trivial fixed point (0, 0, T
−1PT

t=1∆X
2
t ), which however fails to satisfy

the consistency requirement.

9



Theorem 2 Let P1 be the probability measure induced by model (1) with α = 1− c/T , c ≥ 0,
under AssumptionsM and S, and conditional on the realization of at least one level shift. If
ν of (9) satisfies 3 ≤ ν ≤ r − 1, the following facts can be established:

Existence. There exists a random sequence ζ̃T such that P1(ΦT (ζ̃T ) = ζ̃T ) → 1, ζ̃T =
OP1 (1) and ζ̃T is component-wise bounded away from zero in P1-probability.

Uniqueness. If ζ̃
1
T and ζ̃

2
T both have the above properties, then P1(ζ̃

1
T = ζ̃

2
T )→ 1.

Computability. For every non-random ζT0 with positive coordinates, the sequence of
iterates ζTi = ΦT

¡
ζT,i−1

¢
, i ≥ 1, satisfies P1(ζTi →i→∞ ζ̃T )→ 1 as T →∞.

Consistency. Let HT :=
PT
t=1 δtη

2
t , and let σ

2
u denote the variance of ut. ThenPT

t=1 |δt−δ̃t(ζ̃T )| = OP (T−1/2),
PT
t=1 δt|1−δ̃t(ζ̃T )| = OP1(T−(ν−2)/2) and ζ̃T = (NT ,HT ,σ2u)+

oP1 (1).

Thus, ζ̃T is consistent for (NT ,HT ,σ
2
u), and level shifts are detected consistently in the

sense that δ̃t(ζ̃T ) are consistent for δt at the uniform rate of T 1/2.

Remark 3.2. According to the consistency part of Theorem 2, it holds that (ζ̃
λ
T , ζ̃

θ
T ) =

(NT ,HT ) + oP1 (1). This introduces a small complication into the argument for existence of

ζ̃T , because in general no compact in R3 contains NT and HT (and hence, (ζ̃
λ
T , ζ̃

θ
T )) with

probability approaching one, while existence theorems for random fixed points are typically
formulated for mappings from a compact onto itself. One consequence is that, instead of
existence, we only establish existence with probability approaching one. This is not unusual
in econometrics, see e.g. Saikkonen (2001).

Remark 3.3. A further consequence is that in order to prove the theorem we resort to the
trick of looking for a fixed point of the form ζ̃T = ζ (z̃T ), where ζ is the random function
ζ (z) = (NT + z

λ,HT z
θ, zσ)0 and (z̃λT , z̃

θ
T ) = (0, 1) + oP1 (1). For HT 6= 0 the inverse function

ζ−1 is well-defined, and z̃T can be found as a fixed point of ζ−1◦ΦT ◦ζ. To ensure that we can
avail of this fact, Theorem 2 is stated conditionally on the presence of level shifts (NT ≥ 1),
so that HT 6= 0 a.s. The case NT = 0 is considered in the simulation exercise.

Before introducing in Theorem 4 our main result, we present an important lemma which
forms the basis of the proofs of both Theorems 2 and 4. The lemma contains several con-
vergence statements uniform on compacts. One regards the rates of consistent detection of
level shifts; another one, the distance between the OLS estimators of α and γ from ADF
regressions for Xδ

t and for the unobserved Yt; yet another statement is an evaluation of the
Jacobian of ΦT that underlies contraction arguments. In the lemma, for compacts AT in R3
and functions f defined on AT , we write supz∈AT f (ζ(z)) as supAT f(ζ).

Lemma 3 Let P1 be as in Theorem 2, ζ (z) be either the identity on R3 or the random
function (NT +z

λ,HT z
θ, zσ)0, and the compact AT ⊂ R3 be such that maxz∈AT ζ (z) = OP1(1)

and the components of minz∈AT ζ (z) are bounded away from zero in P1-probability. Define
Xδ
t := Xt −

Pt
s=1 δ̃s (ζ)∆Xs, and let X

δ
t be defined accordingly. If ν of (9) satisfies 3 ≤ ν ≤

r − 1, then:
a. supAT

PT
t=1 |δt − δ̃t(ζ)| ≤ OP1(T−1/2) and supAT

PT
t=1 δt|1− δ̃t(ζ)| ≤ OP1(T−(ν−2)/2);

b. supAT (|NT − Φλ
T (ζ) |, |HT − Φθ

T (ζ) |, |σ2u − Φσ
T (ζ) |) ≤ oP1 (1) component-wise;

10



c. supAT ||(T (α̂Y − α̂δ) , T
1/2(γ̂Y − γ̂δ)

0)|| = oP1 (1) and supAT |σ̂2Y − σ̂2δ | = oP1 (1), where
α̂Y , γ̂Y and σ̂2Y (α̂δ, γ̂δ and σ̂2δ) are the OLS estimators of α, γ and σ2ε from the regression
Yt = αYt−1 + γ0∇Yt−1 + errort (Xδ

t = αXδ
t−1 + γ0∇Xδ

t−1 + errort);
d. supz∈AT ||(ΦT )0ζ |ζ=ζ(z)|| ≤ oP1 (1), where (ΦT )

0
ζ is the Jacobian matrix of ΦT as a

function of ζ.

Remark 3.4. The maximum and the minimum in the hypothesis of Lemma 3 are well-defined
random variables due to choice of ζ(z). The notation supAT (·) ≤ oP1 (∗) corresponds to the
statement that there exists an oP1 (∗) sequence which dominates supAT (·), while supAT (·) =
oP1 (∗) means that there exist, first, an oP1 (∗) sequence, and second, a sequence of sets with
P1-probability approaching one, such that for outcomes in these sets, supAT (·) is dominated
by the oP1 (∗) sequence. For the analysis here the two kinds of uniform convergence have the
same implications.

Remark 3.5. According to the lemma, the pseudo probabilities δ̃t (ζ) are consistent for δt
uniformly in z ∈ AT . The faster rate of T−(ν−2)/2 obtains if attention is restricted to periods
with level shifts. This rate implies that better detection of periods with level shifts obtains
by choosing higher values of ν; under the hypothesis of the lemma, the optimal choice is
ν = r−1. A possible explanation is that a larger value of r implies, through the thinner tails
of the εt-distribution, better separation between ∆Yt and ∆Yt + θt, while a larger value of ν
takes advantage of the separation.

Remark 3.6. The lemma states also that the OLS estimators of α and γ based on the de-
jumped data and on the unobservable Yt are asymptotically equivalent, and their closeness is
uniform in z ∈ AT . Asymptotic equivalence holds for any z belonging to any AT , not only for
a fixed point of ΦT (ζ (·)). However, since the fixed point is defined to match relevant sample
characteristics, it can be expected that a test based on it has better finite sample properties.

Remark 3.7. Lemma 3 is proved in the Appendix also without conditioning on the realization
of level shifts; this is the only analytical result we derive unconditionally. It means that if
ΦT is truncated such that its domain and range are a closed cuboid in the positive orthant
of R3, then the fixed point of the truncated mapping can be used to construct unit root tests
with the same unconditional asymptotics as those stated in Theorem 4 for tests based on ζ̃T
under the conditional measure P1 (for the definition of truncation see the proof of Theorem
2).

We are now ready to state our main result.

Theorem 4 Let ζ̃T be as in Theorem 2, and X̃δ
t := Xt−

Pt
s=1 δ̃s(ζ̃T )∆Xs. Let also ν of (9)

satisfy 3 ≤ ν ≤ r − 1. Then, under assumptions M, S and the hypothesis α = 1− c/T , the
ADF statistics ADF δbα, ADF δ

t based on the regression X̃
δ
t = α̃X̃δ

t−1 + γ̃0∇X̃δ
t−1 + errort have

asymptotic distributions given by (2), i.e.

ADF δbα w→ Bc (1)
2 − 1

2
R 1
0 Bc (s)

2 ds
, ADF δ

t
w→ Bc (1)

2 − 1
2(
R 1
0 Bc (s)

2 ds)1/2
,

where weak convergence refers to the sequence of measures conditional on NT ≥ 1.
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According to Theorem 4, in the presence of level shifts the asymptotic distribution of
the ADF statistics based on the de-jumped time series X̃δ

t is the same as that of standard
ADF statistics computed from series with no level shifts, both under the null and under local
alternatives. This result allows to refer to well-known tables of critical values (cf. e.g. Fuller,
1976), and does not require any explicit decision rule about the set of periods affected by
level shifts. Nevertheless, due to the consistency of δ̃t(ζ̃T ), consistent explicit decision rules
are possible: for instance, for any a ∈ (0, 1) the set of periods with δ̃t(ζ̃T ) > 1− a coincides,
with P1-probability approaching one, with the set of periods where level shifts occur.

Remark 3.8. For Xt with non-zero mean or with a linear trend, de-jumping can be combined
with de-meaning and de-trending. Consider e.g. GLS de-trending; de-meaning is analogous.
For the computation of the statistics ADF δ, let δt be estimated and X̃

δ
t be defined as in

Theorems 2 and 4. Then GLS de-trending can be applied to X̃δ
t as described in Elliott et

al. (1996), and ADF δ can be obtained from an ADF regression for the de-trended X̃δ
t . We

study the properties of this procedure by simulation in Section 4.

3.3 Finer de-jumping

In order to improve the finite-sample properties of both the de-jumping procedure and the
related unit root tests, in this subsection we discuss a de-jumping algorithm based on es-
timates of εt + θtδt instead of ∆Xt. It is implemented by iterating until convergence the
following steps: estimation of δt, de-jumping of Xt, ADF regression for the de-jumped series,
and estimation of εt+ θtδt using the regression estimates of α and γ. The fixed points of the
iteration are among those of the mapping ΨT (ξ) defined next.

For a given d = (d1, ..., dT )
0 and (a, γ0), where a substitutes T 1/2 (α− 1) = T−1/2c, intro-

duce edt := ∆Xt−(a, γ0)ATXdt−1. Define furtherΨT (ξ), with argument ξ :=
¡
d0,λ, a, γ0,σ2, θ2

¢0
and with components Ψδ

T (ξ) ,Ψ
λ
T (ξ) ,Ψ

a,γ
T (ξ) ,Ψσ

T (ξ) and Ψ
θ
T (ξ), as follows. First, for t =

1, ..., T , let

Ψδ
Tt (ξ) :=

λ

T

∙
λ

T
+ (1− λ

T
)

φν(e
d
t ;σ

2)

φν(e
d
t ;σ

2 + Tθ2)

¸−1
(11)

and Ψλ
T (ξ) :=

PT
t=1Ψ

δ
Tt (ξ). These are respectively the functions in (9) with∆Xt substituted

by edt , and the counterpart of (8). Denote the series Xt de-jumped with Ψ
δ
T (ξ) by X

Ψ
t :=

Xt−
Pt
s=1Ψ

δ
Ts (ξ)∆Xs; for X

Ψ
t−1 defined accordingly, let Ψ

a,γ
T (ξ) be the estimator of (a, γ0)0

from the regression

∆XΨ
t = (a, γ

0)ATXΨ
t−1 + errort. (12)

Finally, using the updated estimator eΨt := ∆Xt − (Ψa,γT )0ATXΨ
t−1 of εt + δtθt, define

Ψσ
T (ξ) := T

−1
TX
t=1

(1−Ψδ
Tt (ξ))(e

Ψ
t )
2, Ψθ

T (ξ) := T
−1

TX
t=1

Ψδ
Tt (ξ) (e

Ψ
t )
2.

Let ξT be a fixed point of ΨT , and consider the ADF statistics, say ADF
Ψ
α̂ and ADFΨ

t ,
from regression (12) for XΨ

t evaluated at ξ = ξT . The next theorem discusses existence and
uniqueness of a fixed point ξT with the property that Ψ

δ
Tt (ξT ) estimate δt consistently. It also

states conditions ensuring that ADFΨ
α̂ and ADFΨ

t have the usual asymptotic distributions
(2).
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Theorem 5 Under the conditions of Theorem 2 the following facts can be established.
Existence. There exists a sequence ξT such that:
i. P1 (ΨT (ξT ) = ξT ) → 1, i.e. ξT is a random fixed point of ΨT with P1-probability

approaching one;
ii. Consistency, 1. Ψδ

Tt (ξT ) estimate δt consistently in the sense that
PT
t=1

¯̄
δt −Ψδ

Tt (ξT )
¯̄
=

OP1(T
−1/2) and

PT
t=1 δt(1−Ψδ

Tt (ξT )) = OP1(T
−(ν−2)/2);

iii. Consistency, 2. (Ψλ
T (ξT ) ,Ψ

θ
T (ξT ) ,Ψ

σ
T (ξT ) , (Ψ

γ
T (ξT ))

0) = (NT ,HT ,σ2ε, γ0)+oP1 (1) ;
iv. Unit Root tests. The statistics ADFΨ

α̂ and ADFΨ
t have limit distributions given

by

ADFΨ
α̂

w→ Bc (1)
2 − 1

2
R 1
0 Bc (s)

2 ds
, ADFΨ

t
w→ Bc (1)

2 − 1
2(
R 1
0 Bc (s)

2 ds)1/2
,

where weak convergence refers to the sequence of measures conditional on NT ≥ 1.
Furthermore, if part (b) of AssumptionM is replaced by the requirement that E|ε1|r <∞

for some r ≥ 5, then for 4 ≤ ν ≤ r − 1 the following facts hold too.
Uniqueness. If ξ1T and ξ2T have properties (i) to (iv), then P1(ξ

1
T = ξ2T )→ 1.

Computability. ξT can be computed by iteration: if δ̃(ζ̃T ) := (δ̃1(ζ̃T ), ..., δ̃t(ζ̃T )), ξT0 :=

(δ̃(ζ̃T ), ζ̃
λ
T , T

1/2(α̃− 1), γ̃0, ζ̃σT , ζ̃
θ
T )
0 with components defined in Theorems 2 and 4, and ξTi =

ΨT
¡
ξT,i−1

¢
for i ≥ 1, then P1(ξTi →i→∞ ξT )→ 1 as T →∞.

The theorem is similar to Theorems 2 and 4. Uniqueness is established within a smaller
class of sequences than in Theorem 2, but this has no practical implications given that the
iterative algorithm converges to the relevant fixed point. The choice of initial value for the
iteration is important: Theorems 2 and 4 ensure that ξT0, defined through the fixed point
of the rough de-jumping procedure, is sufficiently close to ξT for the iterative algorithm to
converge.

Remark 3.9. Compared to ΦT from (10), ΨT is of larger and sample-dependent dimension,
as it has components for the parameters α and γ, and also for each δt. In the definition
of ΦT we were able to avoid a sample-dependent dimension because the right sides of (9)

upon evaluation at the fixed point ζ̃T depended on δ̃t(ζ̃T ) only through ζ̃
λ
T =

PT
t=1 δ̃t(ζ̃T ).

Since ∆Xt is now substituted by quantities obtained through de-jumping, it is not possible to
reduce their dependence on the estimates of δt to dependence on a fixed number of summary
variables.

Remark 3.10. As a continuation of Remark 3.8, consider an iterated version of de-jumping
and GLS de-trending. The vector ξ and the mapping ΨT , corresponding respectively to
the initial and the updated value at each iteration, are augmented with components ϕτ and
Ψϕ
T for the slope of the trend. In place of e

d
t , the estimates e

d,τ
t := edt − ϕτ of εt + δtθt

are used in the definition of Ψδ
Tt and Ψ

λ
T . The updated de-jumped series is now XΨ

t :=

Xt −
Pt
s=1Ψ

δ
Ts(∆Xs − ϕτ ); it is GLS-detrended to get X

Ψ,τ
t and the updated estimate Ψϕ

T .

ADF regression is performed on XΨ,τ
t instead of XΨ

t , and e
Ψ
t are replaced by e

Ψ,τ
t := eΨt −Ψϕ

T .
The iteration is initialized with the outcome of the rough de-jumping procedure. In the next
section the properties of this procedure are investigated by simulation.
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4 Monte Carlo results

In this section the finite-sample size and power properties of standard ADF tests (ADFbα,
ADFt) and of the proposed ADF tests based on level shifts removal are investigated by Monte
Carlo simulation, either with or without level shifts. We need to establish three main things:
first, that allowing for many possible shifts as assumed in our approach does not result in
deteriorated size properties; second, that the power properties of the new tests are close to
those of the usual ADF tests under standard conditions (i.e., without level shifts), at least
as the sample size increases; third, that in the presence of deterministic trends the proposed
tests can be successfully applied in conjunction with a proper detrending procedure, despite
that all our analytical results are proved under the assumption of no deterministics in the
DGP. In addition, we wish to assess how the properties of the tests are affected by the choice
of the number of degrees of freedom ν of the pseudo-t distribution; in particular, we want to
assess whether the bounds on ν appearing in Theorems 2, 4 and 5 are strict. Finally, as a
by-product we wish to provide additional evidence of the properties of standard ADF tests
under multiple level shifts.

The employed DGPs are as follows. Data are simulated for sample sizes of T = 100, 200, 400
according to model (1) with k = 1, γ := γ1 ∈ {−0.5, 0, 0.5}, Y−1 = 0 and IID innovations.
Two distributional choices for the innovations εt are considered. In the first case, εt ∼ N (0, 1);
Assumption M(b) is valid for any r > 0, and hence, behavior as predicted by asymptotic
results is expected for arbitrarily large ν. The second considered distribution is εt ∼ t (10),
which satisfies Assumption M(b) with r < 10. We consider both the unit root case, which
obtains by setting α of (1) equal to unity, and the sequence of local alternatives α = 1− c/T ,
where c := 7 unless a linear trend is included in the DGP and in the model; in the latter
case, we set c := 13.5.

Three specifications of the level shift component are employed. First, the standard case of
no level shifts (µt = 0 for all t) is considered, with the resulting model denoted by S0. Second,
with S4 we denote the case of four shifts occurring at fixed sample fractions ti, i = 1, ..., 4,
with t1 := b0.2Tc, t2 := b0.35T c, t3 := b0.6T c and t4 := b0.8Tc, and with corresponding size
magnitudes ηi, i = 1, ..., 4, satisfying η1 = η4 := 0.4 and η2 = −η3 := 0.35; consequently, the
level shift component is defined as

µt := T
1/2[0.4I{t≥b0.2T c} + 0.35I{t≥b0.35T c} − 0.35I{t≥b0.6T c} + 0.4I{t≥b0.8T c}] .

Finally, we consider the case of random level shifts, Sr in the following. In this case, the
random number of shifts is generated as NT = 2 + B(T, 2/T ) (B denoting a Binomial dis-
tribution); i.e. at least two level shifts occur over the sample, with an average number of
shifts equal to four. The shift dates ti, i = 1, ..., NT , are defined as ti := [τ iT ] where the
relative locations τ i are independent and uniformly distributed on (0, 1); the (independent)
shift magnitudes ηt are drawn from a uniform distribution on [−4,−0.35] ∪ [0.35, 4].

We consider both the tests based on rough de-jumping (ADF δbα,ADF δ
t ) and tests based

on the finer version of Section 3.3 (ADFΨbα ,ADFΨ
t ). Several values of the degrees of freedom

ν have been used. In what follows, for the case of Gaussian innovations we report the results
obtained by setting ν = ∞ (i.e. Gaussian densities instead of t densities are used in the
estimation of δt); we have checked that the same results obtain by choosing sufficiently large
finite values of ν. For the case of t (10) innovations, in order to investigate the importance
of the upper bound on ν in Theorems 2, 4 and 5, we have used both ν = 8 (which satisfies
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the bound ν ≤ r − 1, see e.g. Theorem 2) and ν = ∞. Initially tests based on raw data
are considered; later we will discuss the case of tests run on GLS-detrended data. All tests
are based on the 5% (asymptotic) nominal level, with critical values taken from Fuller (1976,
Tables 10.A.1 and 10.A.2) for tests without detrending and from Ng and Perron (2001, Table
I) for tests based on GLS detrending. All computations are based on 10, 000 Monte Carlo
replications and are carried out using Ox.

[Table 1 about here]

In Table 1 we report the finite sample size of the six tests considered for the case of no
deterministics in the DGP; all tests statistics are based on raw data. The innovations are
Gaussian and large values of ν are considered by approximating the pseudo-t (ν) density used
for estimating δt with a Gaussian distribution. Two results are worth to note. First, in
the case of no level shifts (Model S0) the size properties of the proposed tests are extremely
accurate, with sizes ranging from 4.8 to 5.5 for the ADF δ tests (rough de-jumping) and from
4.9 to 6.0 for the ADFΨ tests (finer de-jumping). Hence, allowing for multiple level shifts
does not result in spurious rejection of the unit root hypothesis9. Second, in the case of
multiple level shifts (Modes S4 and Sr) standard ADF tests tend to be slightly undersized,
in particular for γ = −0.5 and γ = 0.510. Conversely, despite their generality the ADF δ and
ADFΨ tests display extremely good size properties, with ADFΨ being only slightly oversized
for moderate sample sizes. Hence, also for models S4 and Sr allowing for multiple level shifts
does not lead to spurious rejection of the null hypothesis.

[Table 2 about here]

In Table 2 the size-adjusted power of the six tests is investigated under the local alternative
α = 1−7/T . In the case of no level shifts, it is immediate to see that the new tests, although
allowing for multiple level shifts, have roughly the same power properties as the standard ADF
tests. That is, allowing for possible level shifts does not deteriorate the power properties of
the tests. The picture changes dramatically when level shifts occur. For Model S4, standard
ADF tests have extremely low power: power is about 0 for γ = −0.5, about 0.2 for γ = 0
and about 10 for γ = 0.5 (in agreement with Theorem 1, the distribution of the ADF tests
depends both on γ and on the level-shift process). Conversely, the striking result is that the
tests based on de-jumping have excellent properties, with powers growing rapidly toward the
corresponding asymptotic power envelope as the sample size increases. For T = 100, power is
about 10% for γ = −0.5, 20% for γ = 0 and 30% for γ = 0.5; for T = 200 power grows above
20% for γ = −0.5, 30% for γ = 0 and 40% for γ = 0.5. For T = 400 the rejection rate is about
38% for negative γ and 45% for γ = 0,0.5. The unit root tests based on finer de-jumping
(ADFΨ) seems to be preferable over the tests based on rough de-jumping (ADF δ) for small

9This is an important conclusion given that we did not present analytical results for model S0.
10This result agrees with the asymptotics of Section 2, where it is shown (i) that in the presence of level

shifts standard unit root tests does not behave according to the standard asymptotic theory even under the
null hypothesis, and (ii) that the ADF test statistics are not longer invariant to the short run parameters γ.
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sample sizes. Note also that for low T also the power function of the new tests are affected
by γ; however, as T grows power is less dependent on γ, as expected by the asymptotic
arguments of Section 3. Results for the random shift model Sr do not qualitatively differ
from those obtained for the S4 model; in general, the power loss experienced by standard
ADF tests is less severe than for S4, and our tests have power functions which are closer to
the asymptotic power envelope. Overall, the above power results are extremely significant,
as they show that we are able to distinguish between unit root processes and processes which
are stationary apart from many level shifts even in samples of moderate dimension.

We now turn the attention to the case of tests based on deterministic corrections. As
stressed earlier, this point is extremely important since our asymptotic theory covers the
case of no deterministics only. The suggested approach is to combine pseudo-GLS detrending
with de-jumping in the computation of the ADF δ and ADFΨ statistics. For a time series
Xt and for some chosen α := 1 − c/T (c ≥ 0), the pseudo-GLS detrended series is defined
as X̃α

t := X
α
t − ϕ̂α0Zα

t , where (X
α
0 ,X

α
t ) := (X0, (1− αL)Xt), (Z

α
0 , Z

α
t ) := (Z0, (1− αL)Zt)

and ϕ̂α minimizes S(α, ϕ̂α) :=
P
t(X

α
t − ϕ̂α0Zα

t )
2. Instead of Xt, we detrend the de-jumped

series X̃δ
t and X

Ψ
t , see remarks 3.8 and 3.10. Here we consider the case Zt = (1, t)

0 and, as is
standard (cf. e.g. Elliott et al., 1996; Ng and Perron, 2001), we set c = 13.5.

[Tables 3—4 about here]

In Tables 3 and 4 the size and size-adjusted power results for the case of GLS detrended
data are reported. All the conclusions obtained for the case of no deterministics carry over:
first, in the absence of level shifts our tests behave as the standard ADF tests, while in the
presence of multiple shifts our tests are not (slightly) undersized as standard tests; second,
although having the same power properties of standard tests under S0 (no shifts), our tests
do not experience the serious power loss of standard ADF tests which occur under multiple
level shifts. On the whole, GLS detrending of the de-jumped time series does not seem to
affect the size and power properties of our tests. The only difference with respect to the
results of Tables 1—2 is that the (still severe) power loss of standard ADF tests stemming
from the presence of level shifts is partially mitigated by detrending the data.11

[Table 5 about here]

We conclude this Section by examining the properties of the tests when the innovations,
instead of being Gaussian, follow a Student t(10) distribution. The ADF δ and ADFΨ statis-
tics are computed both using pseudo-t(ν) densities with ν = 8 (according to the constraints
of Section 3) and using Gaussian densities (denoted by ν =∞). Only the size-adjusted power
under Model S4 (raw data) is discussed in the following

12; results are reported in Table 5.

11Further simulation exercises (not reported) has shown that OLS detrending could be used as well instead
of pseudo-GLS detrending. Obviously, OLS detrending lead to different (asymptotic) power properties (cf.
Elliott et al., 1996).
12Extended tables covering both size and power under models S0, S4 and Sr are available from the webpage

http://www2.stat.unibo.it/cavaliere/lshifts.
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First, the power of standard tests is almost as poor as for the case of Gaussian innovations,
ranging from 0 (γ = −0.5) to 15% (γ = 0.5, T = 400). Regarding the ADF δ and ADFΨ tests,
for ν = 8 only T > 200 ensures a substantial power gain over standard tests. By converse, we
found that the tests employing ν =∞, although violating the constraint ν ≤ r−1 appearing
in the asymptotic analysis, have power properties close to those observed for Gaussian errors,
with only a slightly stronger dependence on the short run coefficient γ. Hence, for sample
sizes comparable to those considered in the Monte Carlo experiment, it seems convenient to
use large values of ν, even under non-Gaussian innovations.

5 Conclusions

In this paper, we have proposed a modification of the well-known augmented Dickey-Fuller
(ADF) tests which allows to test for unit roots against stable alternatives in the presence
of multiple level shifts. Contrary to previous results, we do not restrict the number of level
shifts — which occur at random dates and have random sizes — apart from requiring it to
be bounded in probability. Nevertheless, the proposed test statistics have a limiting null
distribution for which critical values are well known in the literature; moreover, they have
the same asymptotic power functions as standard ADF tests under no level shifts. A Monte
Carlo simulation has allowed to show that the new tests behave well in small samples, and
that they can easily account for general deterministic time trends.

The results of this paper can be extended in various directions, which we reserve for further
research. For instance, the number of lags in the autoregressive component of the model is
often unknown in practice and needs to be estimated from the data; hence, it is certainly of
interest to know how the new tests behave in conjunction with automatic, data dependent
criteria for determining the number of lags, such as sequential t tests for the significance of
the last lag or the MAIC developed by Ng and Perron (2001). A second extension would be
to replace the finite autoregression assumption by a general linear process assumption, along
the work of Chang and Park (2002) for the Said-Dickey-Fuller tests. A further important
extensions is to generalize the univariate framework analyzed in this paper to a multivariate
context. As far as we known, apart from the recent work by Lütkepohl et al. (2004) on single
level shifts, so far no contributions which deal with co—integrated systems in the presence of
level shifts have been made.
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A Appendix

The appendix contains proofs of all the results given in the paper. Some lemmas used in
the main proofs are demonstrated in A.1. The argument for Theorem 1 is presented in A.2.
Theorem 4 and related results of Section 3.2 are proved in A.3. Proofs of Theorem 5 are
finally reported in A.4. The following notation is used: as previously, P denotes the sequence
of probability measures induced by model (1) with α = 1−c/T , c ≥ 0, under assumptionsM
and S, and P1 is P conditional on NT ≥ 1; uniform boundedness (convergence) in statements
is denoted as in Remark 3.4, but in proofs may be abbreviated when uniformness is clear
from the context, i.e. (·) ≤ oP (1) is sometimes used instead of sup (·) ≤ oP (1), and similarly
for OP (·); τ denotes a number such that maxt≤T |εt| = OP (T τ ), under assumptionM(b) the
choice τ = r−1 can be made; asterisk denotes the true values c∗ and γ∗ in cases of ambiguity;
k.k denotes the Euclidean norm, but k.k1 and k.k∞ norms are also used.

A.1 Preliminary lemmas

Lemma 6 a. If maxt≤T |εt| = OP (T τ ), then maxt≤T |ut| and maxt≤T |∆Yt| are OP (T τ );
b. If E|ε1|ν+1 <∞, then

PT
t=1 |∆Yt|ν+1 = OP (T ).

Since εt, Y−k and (u1−k, ..., u0) are independent of δs for all t,s, the lemma also holds
under P1, i.e. conditionally on NT ≥ 1.

Proof. Part (a) is standard from the moving average representation of ut with exponen-
tially decreasing coefficients, and from ∆Yt = (−c/T )Yt−1 + ut with maxt≤T |T−1/2Yt−1| w→
maxs∈[0,1] |Bc (s) | (see (2) for the definition of Bc (s)). Next, since ut is the stationary

solution of ut =
Pk
i=1 ut−i + εt, it follows that (ut)

ν+1 is stationary and ergodic (Th.
3.35 in White (2001)). Then E |ε1|ν+1 < ∞ implies by the Zygmund-Marcinkiewicz or
Burkholder’s inequality that E|ut|ν+1 <∞. By an ergodic LLN (Th. 3.34 in White (2001)),PT
t=1 |ut|ν+1 = OP (T ). FromPT

t=1 |∆Yt|ν+1 ≤ 2ν
hPT

t=1 |ut|ν+1 + cν+1T−(ν+1)/2
PT
t=1 |T−1/2Yt−1|ν+1

i
it is seen that

PT
t=1 |∆Yt|ν+1 = OP (T ) , since

PT
t=1 |T−1/2Yt−1|ν+1 ≤ T (maxt≤T |T−1/2Yt|)ν+1 =

OP (T ). ¥

Lemma 7 If yt = OQ (1) , Q ∈ {P,P1} , is a sequence of random variables independent of

δs for all t, s under Q, and if NT satisfies Assumption S(a), then
PT
t=1 δt |yt| = OQ (1) and

maxt:δt=1 |yt| := maxt≤T |δtyt| = OQ (1).

Proof. Direct from the definition of boundedness in probability. ¥

Lemma 8 If êt is a sequence such that maxt≤T |êt−εt−δtθt| = oQ
¡
T 1/2

¢
, then maxt:δt=1 ê

2
t =

OQ (T ), Q ∈ {P,P1}. Further, T−1mint:δt=1 ê2t is bounded away from zero in P1-probability.

proof. Recall θt = T
1/2ηt. The order of magnitude of maxt:δt=1 ê

2
t follows from the inequality

max
t:δt=1

ê2t ≤ 3(T max
t:δt=1

η2t + max
t:δt=1

ε2t +max
t≤T

(êt − εt − T 1/2δtηt)2)
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by applying Lemma 7 to the first two maxima on the right side, and the hypothesis of the
lemma to the last one. The fact that T−1mint:δt=1 ê2t is bounded away from zero in P1-

probability obtains from T−1mint:δt=1 ê2t ≥ mint:δt=1 η2t mint:δt=1
¯̄
1− |η−1t (T−1/2êt − ηt)|

¯̄2
.

The first minimum on the right side equals [maxt:δt=1 η
−2
t ]

−1 = [OP1 (1)]−1 by Lemma 7 and
the assumption that η−1t = OP1 (1), while the second one is 1 + oP1 (1) . Indeed, since

max
t:δt=1

|η−1t (êt − T 1/2ηt)| ≤ max
t:δt=1

|η−1t |
∙
max
t≤T

|êt − εt − T 1/2δtηt|+ max
t:δt=1

|εt|
¸
= oP1(T

1/2),

it follows that, with P1-probability approaching one,

min
t:δt=1

¯̄̄
1− |η−1t (T−1/2êt − ηt)|

¯̄̄
= 1− T−1/2max

δt=1
|η−1t (êt − T 1/2ηt)| = 1 + oP1 (1) .

¥

A.2 Proof of Theorem 1.

Recall that Xt = Yt + µt where, using local-to-unity asymptotics, T
−1/2YbT ·c

w→ σBc (·). To
the term T−1/2µbT ·c = η

PbT ·c
t=1 δt (under the specification ηt = η) we can apply e.g. Theorem

1 of He and Wang (1995), which shows the weak convergence
PbT ·c
t=1 δt

w→ Pλ (·). Due to the
stochastic independence of η, µt and Yt, the joint convergence

T−1/2(YbT ·c, µbT ·c)
w→ (σBc (·) , ηPλ (·)) (13)

on the product space (D[0, 1])×2 obtains. Although this is not a topological vector space, the
functional (x, y) → x + y is continuous on the support C[0, 1] × D[0, 1] of (σBc (·) , ηPλ (·)),
and T−1/2XbT ·c

w→ σBc (·) + ηPλ (·) = σHc (·) by the continuous mapping theorem (CMT).
Note next that (1) implies the following representation for ∆Xt:

∆Xt =
kP
i=1

γi∆Xt−i + ε̃t, ε̃t := εt + Γ(L)∆µt − (c/T )Γ(L)Yt−1, t = 1, ..., T.

Let ∇Xt−1 := (∆Xt−1, ...,∆Xt−k)0, and similarly for ∇Yt−1 and ∇µt−1. The numerator of
the ADFα̂ test statistic based on Xt can be expressed as (Chang and Park, 2002) T (bα− 1) =
(AT/T )

¡
BT/T

2
¢−1

, where

AT :=
TP
t=1
Xt−1ε̃t −

µ
TP
t=1
Xt−1∇X0t−1

¶µ
TP
t=1
∇Xt−1∇X0t−1

¶−1µ TP
t=1
∇Xt−1ε̃t

¶
,

BT :=
TP
t=1
X2
t−1 −

µ
TP
t=1
Xt−1∇X0t−1

¶µ
TP
t=1
∇Xt−1∇X0t−1

¶−1µ TP
t=1
∇Xt−1Xt−1

¶
.

To write the limits of these and other related quantities, we use representations in terms
of stochastic integrals. They follow from Theorem 2.7 of Kurtz and Protter (1991), which
requires the convergence

T−1/2(YbT ·c, µbT ·c,
PbT ·c
t=1 εt, T

1/2PbT ·c
t=1 δt)

w→ (σBc (·) , ηPλ (·) ,σεB (·) ,Pλ (·)) (14)
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on the spaceD4[0, 1] of 4-vector functions with cadlag components endowed with the Skorohod
topology. The convergence holds on the product space (D[0, 1])×4 similarly to (13), and can
be extended to D4[0, 1] by Proposition 2.2(b), Ch.6, in Jacod and Shiryaev (1987). Thus,
Kurtz and Protter’s theorem delivers

T−1
TX
t=1

¡
Yt−1, µt−1

¢0
(εt,∆µt)

w→
Z 1

0
(σBc (s) , ηPλ (s))

0d(σεB (s) , ηPλ (s)) (15)

jointly with (14). Another useful limit is that ofM :=T−1
PT
t=1

¡
∆µt,∇µ0t−1

¢0 ¡
∆µt,∇µ0t−1

¢
and its continuous transformations. Since

PT
t=1 δt−iδt−j = oP (1) for i 6= j, while δT−i = 0

with probability approaching one for i = 0, ..., k, it follows that

M =η2NT Ik+1 + oP (1)
w→ η2Pλ (1) Ik+1. (16)

Convergence is joint with (15) and (14) because η2NT Ik+1 is a continuous transformation of
the left side of (14).

We can now prove the following lemma about convergence of product moments.

Lemma 9 Let Ω∇∇ denote the probability limit of T−1
PT
t=1∇Yt−1∇Y0

t−1, and let Ω1∇ be
the constant matrix defined through T−1

PT
t=1 Yt−1∇Y0

t−1
w→ σ210k

R 1
0 Bc (s) dBc (s) + Ω1∇

(see e.g. Hansen, 1992; Phillips, 1987, Lemma 1), where 1k is a k-vector of ones. Introduce
also the notation [Pλ] := η2Pλ(1) for the quadratic variation of ηPλ (·) over [0, 1]. Then, as
T →∞, the following converge jointly:

(i) T−2
PT
t=1X

2
t−1

w→ σ2
R 1
0 Hc(s)

2ds;

(ii) T−1
PT
t=1Xt−1ε̃t

w→ Γ (1)σ2 R 10 Hc (s) dHc (s) + (Γ(1)− 1) [Pλ] ;

(iii) T−1
PT
t=1∇Xt−1∇X0t−1 w→ Ω∇∇ + [Pλ] Ik =: Ω

P
∇∇;

(iv) T−1
PT
t=1Xt−1∇X0t−1 w→ 10k{σ2

R 1
0 Hc (s) dHc (s) + [Pλ]}+Ω1∇;

(v) T−1
PT
t=1∇Xt−1ε̃t w→ −γ [Pλ];

(vi) T−1
PT
t=1 ε̃

2
t
w→ σ2ε + [Pλ] (1 + γ0γ).

Proof. Convergence (i) obtains from (5) and CMT applied to the functional f → R 1
0 f (s)

2 ds.
Further, the left side of (ii) equals A1 + A2 + A3, with the following Ai’s. First, A1 :=
T−1

PT
t=1Xt−1εt

w→ σ2Γ (1)
R 1
0 Hc (s) dB (s) by (15) and CMT, since σ = σεΓ (1). Second,

A2 := T
−1PT

t=1Xt−1Γ(L)∆µt, which can be written as

A2 = −
kP
i=0

γi

h
T−1

TP
t=1
Xt−i−1∆µt−i + T

−1 TP
t=1
(
iP
j=1
∆µt−j)∆µt−i + T

−1 TP
t=1
(
iP
j=1
∆Yt−j) ∆µt−i

i

with γ0 := −1. The first summation in brackets contributes toA2 with Γ (1)T−1
PT
t=1Xt−1∆µt+

oP (1)
w→ Γ (1)ση

R 1
0 Hc (s) dPλ (s). The contribution of the second one is a continuous

transformation of M in (16) and tends to (Γ (1) − 1) [Pλ]. Since T
−1PT

t=1∆Yt−j∆µt−i =
oP (1) by Lemma 7, we can conclude that A2

w→ Γ (1)ση R 10 Hc (s) dPλ (s) + (Γ (1)− 1) [Pλ].

Third, A3 := −T−2c
PT
t=1Xt−1Γ(L)Yt−1 → −cσ2Γ (1)

R 1
0 Hc (s)Bc (s) ds by (14) and CMT.

Combining the limits of the Ai’s, and recalling that Bc (s) satisfies the Langevin equation
dBc (s) = dB (s)− cBc (s) ds gives the limit asserted in (ii).

20



Convergence (iii) follows from the identity

T−1
TP
t=1
∇Xt−1∇X0t−1 = T−1

TP
t=1
∇Yt−1∇Y0

t−1 + T
−1 TP

t=1
∇µt−1∇µ0t−1 +B+B0,

where B : = T−1
PT
t=1∇Yt−1∇µ0t−1 = oP (1) by Lemma 7. The other two terms have limits

Ω∇∇ and [Pλ] Ik respectively, the latter by (16). For (iv), note that T
−1PT

t=1Xt−1∇X0t−1
equals

T−1
TP
t=1
Yt−1∇Y0

t−1 + T
−1 TP

t=1
µt−1∇Y0

t−1 + T
−1 TP

t=1
Xt−1∇µ0t−1,

where the limit of the first term is given in the hypothesis of the lemma, the second term
equals T−1

PT
t=1(µt−2∆Yt−1, ..., µt−k−1∆Yt−k) + oP (1) by Lemma 7, and converges weakly

to ση10k
R 1
0 Pλ (s) dBc (s) by (15), while, again by Lemma 7, the third term equals

T−1
TP
t=1
(Xt−2∆µt−1, ...,Xt−k−1∆µt−k) + T

−1 TP
t=1
(∆2µt−1, ..., (

kP
i=1
∆µt−i)∆µt−k) + oP (1) ,

and can be seen to have as weak limit 10k{ση
R 1
0 Hc (s) dPλ (s)+[Pλ]} by (15), (16) and CMT.

For items (v) and (vi) we have

T−1
TP
t=1
∇Xt−1ε̃t = T−1

TP
t=1
∇µt−1Γ(L)∆µt +C+D+E+F w→− γ [Pλ] ,

T−1
TP
t=1

ε̃2t = T−1
TP
t=1

ε2t + T
−1 TP

t=1
(Γ(L)∆µt)

2 +G+H
w→σ2ε +

¡
1 + γ0γ

¢
[Pλ] ,

since two kinds of oP (1) terms appear in these expressions. First,C :=T
−1PT

t=1∇Yt−1Γ(L)∆µt,
D :=T−1

PT
t=1∇µt−1εt and G := T−1

PT
t=1 εtΓ(L)∆µt are oP (1) by Lemma 7. Second,

E : = T−1
PT
t=1∇Yt−1εt P→ 0 by an LLN for T−1

PT
t=1(ut−1, ..., ut−k)

0εt and by (15) for
cT−2

PT
t=1 (Yt−2, ..., Yt−k−1)

0 εt, and similarly for F and H which contain overnormalized

contributions of cT−1Yt−1. The terms with non-zero limits are T−1
PT
t=1 ε

2
t
P→ σ2ε by an

LLN, T−1
PT
t=1∇µt−1Γ(L)∆µt = (0k×1, Ik)M(1,−γ0)0 w→ − γ [Pλ] by (16) and CMT, and

T−1
PT
t=1 (Γ(L)∆µt)

2 = tr((1,−γ0)0(1,−γ0)M) w→ [Pλ] (1 + γ0γ) by (16) and CMT again.
Convergence is joint since, up to terms with constant probability limits, the left sides

(i)-(vi) can be collected in a continuous transformation of the left sides of (14) and (15). ¥
From Lemma 9 it follows that, with Γ∞ := Γ (1) + 10k(Ω

P
∇∇)

−1γ [Pλ],

T−1AT
w→ Γ∞σ2

R 1
0Hc (s) dHc (s) +

¡
Γ∞ +Ω1∇(ΩP∇∇)

−1γ − 1¢ [Pλ] ,

T−2BT
w→ σ2

R 1
0Hc (s)

2 ds.

Since T (α̂− 1) = (AT/T )
¡
BT/T

2
¢−1
, it follows that α̂

P→ 1, and hence,

Γ̂ (1) = Γ (1)− 10k
µ
TP
t=1
∇Xt−1∇X0t−1

¶−1µ TP
t=1
∇Xt−1ε̃t

¶
+ oP (1) .
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From Lemma 9 we obtain Γ̂ (1)
w→ Γ∞. Taken together with ADFbα = T (α̂− 1) /Γ̂ (1), these

results yield the limit of ADFbα in (6) with ω0 := (1 + (Ω1∇(ΩP∇∇)
−1γ − 1)Γ−1∞ ) [Pλ] /σ

2.
The proof for the t statistics follows similarly. Specifically, as A2T/T

2 = OP (1), see above,
the following equalities hold:

ADFt = AT/T
¡
BTCT/T

3 −A2T/T 3
¢−1/2

=
AT/T

BT/T 2
(BT/T

2)1/2(CT/T )
−1/2 + oP (1)

= T (bα− 1) (BT/T )1/2(CT/T )−1/2 + oP (1) (17)

with (Chang and Park, 2002)

CT :=
TP
t=1

ε̃2t −
µ
TP
t=1

ε̃t∇X0t−1
¶µ

TP
t=1
∇Xt−1∇X0t−1

¶−1µ TP
t=1
∇Xt−1ε̃t

¶
. (18)

According to Lemma 9, T−1CT
w→ σ2ε + [Pλ] (1 + γ0γ) − γ0(ΩP∇∇)

−1γ [Pλ]
2 =: C∞. Hence,

(17) and (18) ensure that

ADFt
w→ Γ∞σ2

R 1
0 Hc (s) dHc (s) +

¡
Γ∞ +Ω1∇(ΩP∇∇)

−1γ − 1¢ [Pλ]

σC
1/2
∞ (

R 1
0 Hc (s)

2 ds)1/2
,

which is the limit in (6) with ω1 := C∞Γ−2∞ σ−2. In the special case k = 0, we have Γ∞ = 1,
C∞ = σ2ε + [Pλ] and σ2 = σ2ε, from where the simpler expressions for ω0 and ω1. ¥

A.3 Proof of Theorem 4 and related results

A.3.1 Uniform evaluations related to de-jumping

Consistent shift detection. The next lemma provides conditions for uniformly consis-
tent detection of level shifts. It is formulated for compacts AT and random functions ζ (z)
satisfying the hypothesis of Lemma 3, and follows the convention adopted there to denote
supz∈AT f (ζ (z)) by supAT f (ζ).

Lemma 10 . Let êt be as in Lemma 8 and δ̃t (ζ) be defined as in (9) with êt in place of ∆Xt.
If
PT
t=1 (1− δt) |êt|ν+1 = OQ (T ), Q ∈ {P,P1}, then it holds that supAT

PT
t=1 δt(1− δ̃t (ζ)) ≤

OQ(T
−(ν−2)/2) and supAT

PT
t=1 |δt − δ̃t (ζ) | ≤ OQ(Tmax{−1/2,−(ν−2)/2}).

proof. The density φν
¡
e; a2

¢
is given by ga−1

¡
1 + e2/(νa2)

¢−(ν+1)/2
, where g is a nor-

malization constant independent of a. The notation ζ =
¡
λ, θ2,σ2

¢0
is used for ζ (z) =¡

ζλ (z) , ζθ (z) , ζσ (z)
¢0
, with the dependence on z ∈ AT subsumed.

Conditionally on NT = 0 it holds that
PT
t=1 δt(1− δ̃t (ζ)) = 0, so we only need to derive

the OP1(T
−(ν−2)/2)-property of this sum; the OP (T−(ν−2)/2) property follows by combining

the cases NT ≥ 1 and NT = 0. First,

1− δ̃t (ζ) = (1− λ
T )

∙
1− λ

T +
λ
T

φν(êt;σ2+Tθ2)
φν(êt;σ

2)

¸−1
< T

λ

φν(êt;σ2)
φν(êt;σ2+Tθ2)

= T
λ

³
1 + T θ2

σ2

´1/2 ³
1 +

ê2t
νσ2

´−(ν+1)/2 ³
1 +

ê2t
ν(σ2+Tθ2)

´(ν+1)/2
.
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On AT the quantity λ−1
¡
1 + Tθ2/σ2

¢1/2
is bounded by OP1(T

1/2), and hence,

δt(1− δ̃t (ζ)) ≤ OP1(T 3/2)δt
³
1 +

mint:δt=1 ê
2
t

νσ2

´−(ν+1)/2 ³
1 +

maxt:δt=1 ê
2
t

ν(σ2+Tθ2)

´(ν+1)/2
.

Summing over t and accounting for the assumption that NT = OP1 (1) yields the evaluation

TP
t=1

δt(1− δ̃t (ζ)) ≤ OP1(T 3/2)
³
1 +

mint:δt=1 ê
2
t

νσ2

´−(ν+1)/2 ³
1 +

maxt:δt=1 ê
2
t

ν(σ2+Tθ2)

´(ν+1)/2
.

Since σ2 ≤ OP1 (1) on AT and, according to Lemma 8, T−1mint:δt=1 ê2t is bounded away from
0 in P1-probability, it follows that T

−1 ¡νσ2¢−1mint:δt=1 ê2t has the same property. Hence,
(1 +

¡
νσ2

¢−1
mint:δt=1 ê

2
t )
−(ν+1)/2 = OP1

¡
T−(ν+1)/2

¢
. On the other hand, maxt:δt=1 ê

2
t =

OP1 (T ) again by Lemma 8, and since θ
2 is bounded away from zero in P1-probability on AT ,

it follows that ν−1(σ2+Tθ2)−1maxt:δt=1 ê2t = OP1 (1). Combining the two conclusions yieldsPT
t=1 δt(1− δ̃t (ζ)) ≤ OP1(T−(ν−2)/2), where the dominating sequence is independent of the

point z ∈ AT at which ζ (z) is evaluated.
The order of magnitude of

PT
t=1 (1− δt) δ̃t (ζ) is addressed next. By evaluating from

below the denominator of (9), it can be concluded that

δ̃t (ζ) < T−1λ
(1−T−1λ)

φν(êt;σ
2+Tθ2)

φν(êt;σ
2)

= T−1λ
(1−T−1λ)

³
1 + T θ2

σ2

´−1/2 ³
1 +

ê2t
νσ2

´(ν+1)/2 ³
1 +

ê2t
ν(σ2+Tθ2)

´−(ν+1)/2
.

On AT the contribution of the factors containing only λ, θ2 and σ2 is OQ(T
−3/2), while the

last factor does not exceed unity. Further, by applying to x = (νσ2)−1/2|êt| the inequality¡
1 + x2

¢(ν+1)/2
< 2(ν+1)/2(1 + |x|ν+1), it is seen that ¡1 + (νσ2)−1ê2t ¢(ν+1)/2 < 2(ν+1)/2 +

OQ (1) |êt|ν+1 since (σ2)−1 ≤ OQ (1) on AT . Hence,
(1− δt) δ̃t (ζ) ≤ T−3/2 (1− δt) (OQ (1) +OQ (1) |êt|ν+1)

TP
t=1
(1− δt) δ̃t (ζ) ≤ OQ(T−1/2) +OQ(T−3/2)

TP
t=1
(1− δt) |êt|ν+1 (19)

where in the second line the inequality
PT
t=1 (1− δt) ≤ T has been used. Under the hypothe-

sis that
PT
t=1 (1− δt) |êt|ν+1 = OQ (T ) we get

PT
t=1 (1− δt) δ̃t (ζ) ≤ OQ

¡
T−1/2

¢
. Combining

this result with the first part of the lemma gives
PT
t=1 |δt − δ̃t (ζ) | =

PT
t=1 (1− δt) δ̃t (ζ)+PT

t=1 δt(1− δ̃t (ζ)) ≤ OQ
¡
T−1/2

¢
+OQ(T

−(ν−2)/2). ¥

Uniform consistency for the autoregressive coefficients. The next lemma evaluates
the uniform distance between Yt and X

d
t = Xt −

Pt
s=1 ds∆Xs depending on how close d =

(d1, ..., dT )
0 is to the true δ = (δ1, ..., δT )0, while Lemma 12 establishes the distance between

the OLS estimators in the ADF regression based on Xd
t and that based on Yt. For the reasons

that motivated the format of Lemma 3, see Remark 3.3, d is treated as a random function of
a real vector. For example, it could be that d(z) = δ̃(ζ(z)), where the components of δ̃(·) are
the functions (9), and ζ(z) are as in Lemma 3; other choices will be made too. The domain of
d is restricted to a set GT such that, for some β ≥ 0, supz∈GT

PT
t=1 |dt(z)− δt| is dominated

by an OQ
¡
T−1/2+β

¢
-sequence, Q ∈ {P,P1}. In the example d(z) = δ̃(ζ(z)) we could take

GT = AT and β = 0, under the assumptions of Lemmas 8 and 10, and for ν ≥ 3. Below the
dependence of d on z is subsumed, and supz∈GT f (d (z)) is abbreviated to supGT f (d).
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Lemma 11 Assume that the domain of d is a set GT such that supGT
PT
t=1 |dt − δt| ≤

OP
¡
T−1/2+β

¢
for some β ≥ 0. If maxt≤T |εt| = OQ (T τ ) with β + τ < 1/2 and β < τ , then

for Q ∈ {P,P1}:
a. supGT ;t≤T |Yt −Xd

t | ≤ OQ
¡
T β
¢
and supGT ;t≤T |Xd

t | ≤ OQ
¡
T 1/2

¢
;

b. supGT ;t≤T
PT
t=1 |∆Yt −∆Xd

t | ≤ OQ(T β), supGT |∆Yt −∆Xd
t | ≤ aT δt + bT with aT =

OQ
¡
T β
¢
, bT = OQ(T

−1/2+β+τ ), and supGT ;t≤T |∆Xd
t | ≤ OQ (T τ );

c. supGT ||ATXdt − ATYt|| ≤ ãTδt + b̃T and supGT ;t≤T ||ATXdt || ≤ OQ (T τ ) , with δt =Pk−1
i=0 δt−i denoting the number of level shifts between periods t− k+1 and t, ãT = OQ

¡
T β
¢

and b̃T = OQ
¡
T−1/2+β+τ

¢
.

Proof. Inserting Xt = Yt + T
1/2
Pt
s=1 δsηs and ∆Xt = ∆Yt + T

1/2δtηt in the definition of
Xd
t gives

Xd
t − Yt = −

tP
s=1

δs∆Ys +
tP
s=1
(δs − ds)(∆Ys + T 1/2δsηs),

∆Xd
t −∆Yt = −δt∆Yt + (δt − dt)(∆Yt + T 1/2δtηt).

(20)

Thus, from the first equation,

|Yt −Xd
t | ≤

tP
s=1

δs |∆Ys|+ [max
s≤T

|∆Ys|+ T 1/2
tP
s=1

δs |ηs|]
tP
s=1

|δs − ds| (21)

≤ OQ (1) +
h
OQ (T

τ ) +OQ(T
1/2)

i
OQ(T

−1/2+β) = OQ(T β),

with orders of magnitude taken respectively from Lemmas 7, 6(a), 7, and from the hypothesis.
This is the first relation in (a). Together with maxt≤T |Yt| = OP

¡
T 1/2

¢
, it implies the other

relation there.
The right side of the first line in (21) is an upper bound also for

Pt
s=1 |∆Ys−∆Xd

s |, and
with t = T the first relation in (b) follows from the above argument. Next, from the second
equation in (20),

|∆Yt −∆Xd
t | ≤ δt(max

t:δt=1
|∆Yt|+ T 1/2 max

t:δt=1
|ηt|

TP
t=1
|δt − dt|) +max

t≤T
|∆Yt|

TP
t=1
|δt − dt| ,

from where the expressions for aT and bT in (b) can be read. Their orders of magnitude follow
as in (a). Further, supGT ;t≤T |∆Xd

t | ≤ supGT ;t≤T
¯̄
∆Yt −∆Xd

t

¯̄
+maxt≤T |∆Yt| = OQ (T τ ) by

the above evaluation, Lemma 6(a), and since β < τ .
A vector version supGT ||∇Yt − ∇Xdt || ≤ δtaT + kbT obtains readily. Together with

(a), it gives for Yt = (Yt, (∇Yt)0)0 and Xdt = (Xd
t , (∇Xdt )0)0 the first relation in (c). Since

maxt≤T ||ATYt|| ≤ maxt≤T |T−1/2Yt|+ kmaxt≤T |∆Yt| = OQ (T τ ) , it holds further that

sup
GT ;t≤T

||ATXdt || ≤ max
t≤T

||ATYt||+ sup
GT ;t≤T

||AT (Xdt −Yt)|| ≤ OQ (T τ ) + ãTNT + b̃T ,

which is OQ (T
τ ) for β < τ . ¥

Lemma 12 Let (α̂d − 1, γ̂0d)0 and (α̂Y − 1, γ̂0Y )0 be the OLS estimators for the regressions
∆Xd

t = (α−1, γ0)Xdt−1+errort and ∆Yt = (α−1, γ0)Yt−1+errort respectively, and σ̂2d and σ̂2Y
be the residual variances. Then, under the assumptions of Lemma 11 with β = 0, it holds that
supGT

°°¡T (α̂d − α̂Y ), T
1/2(γ̂d − γ̂Y )

0¢°° = OQ ¡T τ−1/2¢ and supGT ¯̄σ̂2d − σ̂2Y
¯̄
= OQ

¡
T τ−1/2¢.
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Proof. From (1) it follows that ∆Yt = γ0∗∇Yt−1 + ẽt, ẽt := εt − (c∗/T )Γ∗ (L)Yt−1, which
upon insertion of ∆Yt = ∆X

d
t +

¡
∆Yt −∆Xd

t

¢
and ∇Yt−1 = ∇Xdt−1 + (∇Yt−1 − ∇Xdt−1)

becomes ∆Xd
t = γ0∗∇Xdt−1 + ẽt + Γ∗ (L) (∆Xd

t −∆Yt). Hence,

(T (α̂Y − 1), T 1/2γ̂0Y )0 = T 1/2(0, γ0∗)
0 + (ST11)

−1ST1e,
(T (α̂d − 1), T 1/2γ̂0d)0 = T 1/2(0, γ0∗)

0 + (ST11 +R
T
11)
−1(ST1e +R

T
1e +R

T
1∇), (22)

with matrices ST11 := T−1
PT
t=1ATYt−1(ATYt−1)

0, ST1e := T−1/2
PT
t=1ATYt−1∆Yt, R

T
11 :=

T−1AT [
PT
t=1X

d
t−1(Xdt−1)0 −

PT
t=1Yt−1(Yt−1)

0]AT , RT1e := T−1/2AT
PT
t=1(X

d
t−1 − Yt−1)ẽt

and RT1∇ := T
−1/2AT

PT
t=1X

d
t−1Γ∗ (L) (∆Xd

t −∆Yt). We argue for the existence of sequences
rTij = OQ(T

τ−1/2) such that supGT ||RTij || ≤ rTij , and then use that ST11 and ST1e are well-known
to be normalized properly for non-degenerate convergence.

First, ||RT11|| ≤ (maxt≤T ||ATXdt−1||+maxt≤T ||ATYt−1||).T−1
PT
t=1 ||ATXdt−1−ATYt−1||.

It is seen from Lemmas 6(a) and 11 (with β = 0) that the two maxima are OQ (T
τ ), while

the summation is bounded by T−1/2
PT
t=1 |Xd

t−1 − Yt−1|+ k
PT
t=1 |∆Yt −∆Xd

t | ≤ OQ(T 1/2),
all uniformly on GT . Hence, supGT ||RT11|| ≤ OQ(T τ−1/2). Second,

||RT1e|| ≤ T−1
¯̄̄PT

t=1(X
d
t−1 − Yt−1)ẽT

¯̄̄
+ T−1/2

°°°PT
t=1(∇Xdt−1 −∇Yt−1)ẽt

°°° .
The difference under the absolute value can be written asPT

t=1(X
d
t−1 − Yt−1)ẽt = (Xd

T−1 − YT−1)ẽt −
PT−1
t=1 (∆X

d
t −∆Yt)

Pt
s=1 ẽt

by partial summation. Therefore, the absolute value itself is bounded by

max
t≤T

|ẽt|max
t≤T

|Xd
t − Yt|+max

t≤T
|Pt

s=1 ẽt|
PT
t=1 |∆Xd

t −∆Yt| ≤ OQ(T 1/2)

since maxt≤T |ẽt| ≤ maxt≤T |εt|+(||γ∗||1 + 1) (c/T )maxt≤T |Yt| = OQ (T τ ), maxt≤T
¯̄
Xd
t − Yt

¯̄ ≤
OQ(1) by Lemma 11(a),

max
t≤T

|Pt
s=1 ẽt| ≤ max

t≤T
|Pt

s=1 εt|+ (||γ∗||1 + 1)(c∗/T )max
t≤T

|Pt
s=1 Yt−1| = OQ(T 1/2),

and, by Lemma 11(b), supGT
PT
t=1 |∆Xd

t −∆Yt| ≤ OQ (1). Further, still by Lemma 11,°°°PT
t=1(∇Xdt−1 −∇Yt−1)ẽt

°°° ≤ max
t≤T

|ẽt|
PT
t=1 ||∇Xdt−1 −∇Yt−1|| ≤ OQ (T τ )OQ(1)

uniformly on GT . Combining the above evaluations gives supGT ||RT1e|| ≤ OQ(T τ−1/2). The
boundedness of supGT ||RT1∇|| is obtained similarly:

||RT1∇|| ≤ T−1/2(||γ∗||1 + 1)max
t≤T

||ATXdt−1||
PT
t=1 |∆Xd

t −∆Yt| = OQ(T τ−1/2).

Returning to (22) and accounting for the identity (ST11 + R
T
11)
−1 = (ST11)

−1 − (ST11 +
RT11)

−1RT11(ST11)−1, it obtains that

(T (α̂d − α̂Y ), T
1/2(γ̂d − γ̂0Y )) = (S

T
11)
−1(RT1e +R

T
1∇)− (ST11 +RT11)−1RT11(ST11)−1(ST1e +RT1e +RT1∇).
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To evaluate the norm of this expression, note that for outcomes such that ||RT11||||(ST11)−1|| ≤
1, the inequality ||(ST11 + RT11)−1|| ≤ ||(ST11)−1||(1 − ||RT11||||(ST11)−1||)−1 holds.13 Define
FT :=

©
ω : rT11 ≤ ||(ST11)−1||−1

ª
; they satisfy Q (FT ) → 1 since rT11 = OQ

¡
T−1/2+τ

¢
and

S11 converges to a positive definite limit. Now

||(ST11)−1||(rT1e + rT1∇)− rT11||(ST11)−1||.(||ST1e||+ rT1e + rT1∇)/(1− rT11||(ST11)−1||)
is anOQ

¡
T−1/2+τ

¢
-sequence dominating supGT

°°¡T (α̂d − α̂Y ), T
1/2(γ̂d − γ̂Y )

0¢°° for outcomes
in FT .

For the residual variances we have

σ̂2d − σ̂2Y = T−1
TP
t=1

h
(∆Xd

t )
2 −∆Y 2t

i
− (T 1/2(α̂d − 1), γ̂d)RT11(T 1/2(α̂d − 1), γ̂d)0

−(T 1/2(α̂d − α̂Y ), γ̂d − γ̂Y )S
T
11(T

1/2(α̂d + α̂Y ), γ̂d + γ̂Y )
0,

and since ||PT
t=1

£
(∆Xd

t )
2 −∆Y 2t

¤ || ≤ (maxt≤T |∆Xd
t |+maxt≤T |∆Yt|)

PT
t=1 |∆Xd

t −∆Yt| ≤
OQ (T

τ ) uniformly on GT , see Lemma 11, from the previous argument it follows that, for
outcomes in FT , supGT |σ̂2d − σ̂2Y | is dominated by an OQ

¡
T−1/2+τ

¢
sequence. ¥

A.3.2 Proof of Lemma 3

The proof of items (a) to (c) is straightforward from the results in the previous section. We
start by verifying that êt = ∆Xt satisfies the hypotheses of Lemmas 8 and 10, which yields
item (a) and the first relation in item (b) of Lemma 3, provided that 3 ≤ ν ≤ r−1. Indeed, in
view of assumptionM(b), maxt≤T |εt| = OQ (T τ ) with τ = r−1 ≤ 1/4, and by Lemma 6(a)
also maxt≤T |ut| = OQ (T

τ ). Together with maxt≤T |Yt−1| = OQ
¡
T 1/2

¢
, this ensures that

maxt≤T |∆Xt − εt − T 1/2δtηt| ≤ T−1cmaxt≤T |Yt−1| + maxt≤T |ut| = oQ
¡
T 1/2

¢
as required

in Lemma 8. From here it is straightforward that maxt≤T |∆Xt| = OP
¡
T 1/2

¢
, which will

be used below. Further, (1− δt) |∆Xt|ν+1 = (1− δt) |∆Yt|ν+1 and
PT
t=1 (1− δt) |∆Xt|ν+1 ≤PT

t=1 |∆Yt|ν+1 = OQ(T ) by the hypothesis, Lemma 6(b) and due to the choice ν + 1 ≤ r,
implying that Lemma 10 is applicable too.

In view of item (a), we can invoke Lemma 12 with d(z) = δ̃(ζ(z)), GT = AT , to get item
(c). The two remaining relations in (b) obtain as follows. First,°°°°³Φθ

T ,Φ
σ
T

´
− T−1

TP
t=1
(δt, 1− δt)∆X

2
t

°°°° =
√
2T−1

¯̄̄̄
TP
t=1
(δt − δ̃t (ζ))∆X

2
t

¯̄̄̄
≤
√
2T−1max

t≤T
∆X2

t

TP
t=1
|δ̃t (ζ)− δt| ≤ OQ(T−1/2)

since maxt≤T |∆Xt| = OP
¡
T 1/2

¢
. Substituting next (1− δt)∆X

2
t = (1− δt)∆Y

2
t and

δt∆Xt = δt(∆Yt + T
1/2ηt) and passing to the limit gives the relations.

Consider now the Jacobian Φ0T (ζ). It is checked directly that, for δ̃t (ζ) defined in (9),
∂δ̃t (ζ) /∂ζ

0 = δ̃t (ζ) (1− δ̃t (ζ))vt, with

vt =

µ
1

λ(1−T−1λ) ,
∂ ln[φν(êt;σ2+Tθ2)/φν(êt;σ2)]

∂σ2
,
∂ lnφν(êt;σ2+Tθ2)

∂θ2

¶0
.

13It follows e.g. by taking norms on both sides of
¡
ST11 +R

T
11

¢−1
= (ST11)

−1 − (ST11)−1RT11
¡
ST11 +R

T
11

¢−1
,

evaluating the norm of the right side, and solving the resulting inequality for || ¡ST11 +RT11¢−1 ||.
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From here Φ0T (ζ) can be written as Φ
0
T (ζ) = T−1

PT
t=1 δ̃t (ζ) (1 − δ̃t (ζ))wtv

0
t, with wt =¡

T,−∆X2
t ,∆X

2
t

¢0
, and can be evaluated as follows:

°°Φ0T (ζ)°° ≤ 3max
t≤T

kvtk∞max
t≤T

°°T−1wt°°∞ TP
t=1

δ̃t (ζ) (1− δ̃t (ζ)), (23)

where k.k∞ is the max-norm in R3. To show item (d), we discuss the factors on the right side
separately. Start from the components of vt. First,

∂ lnφν
¡
êt;σ

2 + Tθ2
¢

∂(σ2, θ2)
= −1

2

1

σ2 + Tθ2
[1− (ν + 1) Ê2t

1 + Ê2t
]

µ
1
T

¶
,

where Ê2t = ∆X
2
t

£
ν
¡
σ2 + Tθ2

¢¤−1
. A similar expression (with a different Ê2t ) obtains for

∂
£
lnφν

¡
êt;σ

2
¢¤
/∂σ2. Using that Ê2t /(1 + Ê

2
t ) < 1, it follows further that¯̄̄̄

∂ lnφν(êt;σ2+Tθ2)
∂θ2

¯̄̄̄
< ν+2

2θ2
,

¯̄̄̄
∂ lnφν(êt;σ2+Tθ2)

∂σ2

¯̄̄̄
< ν+2

2σ2
and

¯̄̄̄
∂ lnφν(êt;σ2)

∂σ2

¯̄̄̄
< ν+2

2σ2
, (24)

with all right sidesOQ (1) onAT . Also λ−1
¡
1− T−1λ¢−1 ≤ (minAT λ)−1(1−T−1maxAT λ)−1 =

OQ (1) on AT . Hence, supAT ;t≤T kvtk∞ ≤ OQ (1). The other terms on the right side of (23)
are

PT
t=1 δ̃t (ζ) (1 − δ̃t (ζ)) ≤

PT
t=1 |δt − δ̃t (ζ) | ≤ OQ

¡
T−1/2

¢
uniformly on AT by Lemma

3(a), and maxt≤T
°°T−1wt°°∞ = max{1, T−1maxt≤T ∆X2

t } = OQ (1), see above. Item (d)
obtains by inserting the obtained orders of magnitude into (23). ¥

A.3.3 Proof of Theorems 2 and 4

existence. To be able to invoke a standard fixed-point theorem, we set up an auxiliary
fixed-point problem for a new mapping defined by centering, normalizing and truncating ΦT
in a way such that it maps a compact onto itself. Existence of a random fixed point for that
mapping is classical, and it turns out that with P1-probability approaching one, the same
point is a fixed point of ΦT .

Let AT = Aλ
T ×Aθ

T × Aσ
T with Aλ

T = [−1/2, 1/2] , Aθ
T = [1/2, 3/2] , and Aσ

T = [σ
2
u/2, 2σ

2
u].

Further, let ζ : AT → R3 act on z = (zλ, zθ, zσ)0 according to ζ (z) = (zλ +NT ,HT z
θ, zσ)0,

and let ΘT = ζ−1 ◦ΦT ◦ ζ. Under P1 we have HT 6= 0 a.s., and hence, ΘT is well-defined a.s.
Further, let ΘtrT : AT → AT be defined component-wise: for v ∈ {λ, θ,σ} , Θtr,vT (z) = ΘvT (z)

if ΘvT (z) ∈ AvT , Θtr,vT (z) = minAvT if ΘvT (z) < minAvT and Θ
tr,v
T (z) = maxAvT if ΘvT (z) >

maxAvT . Since ΘtrT is continuous and AT is a convex compact, ΘtrT admits a random fixed
point z̃T ∈ AT . This is guaranteed for example by Theorem 10 in Bharucha-Reid (1976).

Since, in view of the evaluations in Lemma 3(b), ΘT (z̃T ) = ζ−1((NT ,HT ,σ2u)0+oP1 (1)) =
(0, 1,σ2u)

0+oP1 (1) , and since the point (0, 1,σ2u)0 is interior for AT , it follows that P1(ΘT (z̃T ) ∈
AT ) → 1. Note next that for outcomes such that ΘT (z̃T ) ∈ AT we have z̃T = ΘtrT (z̃T ) =
ΘT (z̃T ), i.e. ζ̃T = ζ(z̃T ) is a fixed point of ΦT . Hence, z̃T is a random fixed point of ΦT on
AT with P1-probability approaching one. ¥
uniqueness. This part of the proof uses a contraction argument. Let ζ̃

1
T and ζ̃

2
T have the

properties of ζ̃T from the existence part of the theorem. Fix ² > 0. Since HT , ζ̃
1
T and ζ̃

2
T are

bounded away from 0 in P1-probability (by Lemma 8(a) applied to η
−1
t for the first of them),
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there exist a constant l > 0 and a set A1 with P1 (A1) > 1− ²/10 such that for outcomes in
A1 it holds that HT ≥ 2l, ζ̃1T ≥ l and ζ̃

2
T ≥ l, where for ζ̃

i
T the inequalities are satisfied by

each component. Similarly, since HT , NT , ζ̃
1
T and ζ̃

2
T are OP1 (1) (again by Lemma 8(a) for

the first of them), there exist a constant l > 2l and a set A2 with P1 (A2) > 1 − ²/10 such
that for outcomes in A2, HT ≤ l, NT ≤ l, ζ̃1T ≤ l and ζ̃

2
T ≤ l.

Define the compact K as [min(l, 1/2), 2l̄]× [l, 2l̄]× [min(σ2u/2, l),max(2σ2U , l̄)]. This choice
ensures two things for outcomes in A1∩A2. First, that ζ̃1T ∈ K and ζ̃

2
T ∈ K, and second, that

the point (NT ,HT ,σ
2
u)
0 is interior for K and at distance from ∂K bounded from below by a

positive number. In view of the latter, it follows from Lemma 3(b) applied to AT = K and
ζ (z) equal to the identity function that there exist an A3 ⊂ A1 ∩A2 with P1 (A3) > 1− ²/4
and an integer T3 such that for outcomes in A3 and T > T3, ΦT (K) ⊂ K. By item (d) of
the same lemma, there exist T4 > T3 and a set A4 ⊂ A3, with P1 (A4) > 1− ²/2, such that
for T > T4 and on A4, supζ∈K ||(ΦT )0ζ || < 1/2. Thus, under the same conditions ΦT is a
contraction, and for each outcome in A4 it has a unique fixed point by Banach’s fixed point
theorem.

Consider finally T5 and A5 with P1 (A5) > 1− ²/2 such that for T > T5 and outcomes in
A5, ΦT (ζ̃1T ) = ζ̃

1
T and ΦT (ζ̃

2
T ) = ζ̃

2
T . This is possible by the choice of ζ̃

1
T and ζ̃

2
T . Then for

outcomes in A1 ∩ A2 ∩ A5 and T > T5 both ζ̃
1
T and ζ̃

2
T are fixed points of ΦT on K, while

for outcomes in A1 ∩A2 ∩A4 ∩A5 = A4 ∩A5 and T > max (T3, T4, T5) , ζ̃1T and ζ̃
2
T must be

equal to the unique fixed point of ΦT on K. Since P1 (A4 ∩A5) > 1 − ² and ² is arbitrary,
this means that P1(ζ̃

1
T = ζ̃

2
T )→ 1. ¥

computability. This proof uses a contraction argument too. Let K̃ := K ∪ {ζT0}, where K
was defined in the previous proof. As in the previous proof, there exist a set B1 ⊂ A1 ∩A2
with P1 (B1) > 1− ²/2 and an integer T1 such that for outcomes in B1 and T > T1, ΦT is a
contraction of K̃ onto K̃ and ζ̃T ∈ K̃, with ζ̃T standing for any of ζ̃

1
T and ζ̃

2
T . Further, there

exist a set B2 with P1 (B2) > 1 − ²/2 and an integer T2 such that for outcomes in B2 and
T > T2 it holds that ΦT (ζ̃T ) = ζ̃T . Hence, for outcomes ω ∈ B1∩B2, with P1(B1∩B2) > 1−²,
and for T > max (T1, T2), the sequence of iterates of ΦT converges to its unique fixed point
ζ̃T (ω) on K̃. Convergence is again implied by Banach’s fixed point theorem. ¥

The remaining statements in Theorem 2 and Theorem 4 follow in a straightforward way
from Lemmas 3 (with AT as in the existence proof) and 12 (with d(z) = δ̃(ζ(z)), GT = AT ),
and from (2).

A.4 Proof of Theorem 5 and related results

The role of the compact AT from the proof of Theorem 2 is played here by DT ⊂ RT+k+4
defined as DT =

Q
v∈V DvT , V = {δ,λ, a, γ, θ,σ}, with factors Dδ

T = {xδ ∈ RT :
PT
t=1

¯̄
xδt
¯̄ ≤

T−1/2+ρ}, Dλ
T = [−1/2, 1/2], DaT =

£−T−1/2+ρ, T−1/2+ρ¤ , Dγ
T = {xγ ∈ Rk : ||xγ − γ∗|| ≤ 1},

Dθ
T = [1/2, 3/2] and Dσ

T =
£
σ2ε/2, 2σ

2
ε

¤
, where ρ > 0 will be chosen as close to 0 as convenient.

The point at which ΨT is evaluated is specified as a transformation ξ(x) with components
d (x) = xδ+ δ with δ = (δ1, ..., δT )

0, λ (x) = xλ+NT , (a, γ0)0 (x) = (xa, (xγ)0)0, θ2 (x) = HTxθ

and σ2 (x) = xσ. It will be shown that there exists a random sequence xT ∈ DT such that
P1(ΨT (ξ(xT )) = ξ(xT )) → 1. The argument uses properties in the spirit of Lemma 3 that
are worked out next. The notation supx∈DT f (ξ (x)) = supDT f (ξ) is employed, and the
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argument x of ξ and its components is subsumed.

A.4.1 More lemmas

Recall the notation XΨ
t := Xt −

Pt
s=1Ψ

δ
Ts∆Xs (X

d
t := Xt −

Pt
s=1 ds∆Xs) and e

Ψ
t :=

∆Xt −Ψa,γT ATX
Ψ
t−1 (edt := ∆Xt − (a, γ0)ATXdt−1).

Lemma 13 Let 3 ≤ ν ≤ r − 1, ρ < τ , ρ+ τ < 1/2 and 2ρ (ν + 1) ≤ 1, where maxt≤T |εt| =
OP1 (T

τ ). Then:
a. supDT

PT
t=1 |δt −Ψδ

Tt| ≤ OP1(T−1/2), supDT
PT
t=1 δt(1−Ψδ

Tt) ≤ OP1(T−(ν−2)/2);
b. supDT

PT
t=1 δt−1Ψ

δ
Tt(1−Ψδ

Tt) ≤ OP1(T−1 + T−(ν−2)/2), where δt−1 =
Pk
i=1 δt−i;

c. supDT ||Ψa,γT − (T 1/2(α̂Y − 1), γ̂0Y )0|| = OP1
¡
T τ−1¢;

d. supDT
PT
t=1Ψ

δ
Tt|eΨt | = OP1

¡
T 1/2

¢
;

e. supDT ||(Ψθ
T −HT ,Ψσ

T − σ2ε)|| = OP1(T−1/2).

proof. Note that maxt≤T |εt| = OP1
¡
T 1/4

¢
since E |ε1|4 <∞ under P1. Thus, the assump-

tions on ρ are not restrictions on the studied processes, since in the definition of DT arbitrarily
small positive ρ can be chosen.

To get item (a), we apply Lemma 10 to êt = edt , AT = Dλ
T × Dσ

T × Dθ
T and ζ(x) =

(xλ + NT ,HTx
θ, xσ)0. To claim that the resulting evaluation of

PT
t=1 |δt − Ψδ

Tt| is uniform
over the whole DT , we use that edt do not depend on

¡
λ,σ2, θ2

¢
and have the properties

required in Lemmas 8 and 10 uniformly on Dδaγ
T := Dδ

T ×DaT ×Dγ
T .

First, edt − εt − T 1/2δtηt − (γ∗ − γ)0∇Yt−1 are evaluated. They equal −T−1/2aYt−1 −
T−1c∗Γ∗(L)Yt−1−(a, γ0)AT (Xdt−1−Yt−1), where |T−1/2a| ≤ O

¡
T−1+ρ

¢
and ||(a, γ0)|| ≤ O(1)

on DaT × Dγ
T , while maxt≤T |Yt−1| = OP1

¡
T 1/2

¢
, and to ||AT (Xdt−1 − Yt−1)|| Lemma 11(c)

with d (x) = xδ + δ, x ∈ DT and β = ρ can be applied. Combining the orders of magnitude
gives

supDδaγT
|edt − εt − T 1/2δtηt − (γ∗ − γ)0∇Yt−1| ≤ OP1 (T ρ) δt−1 +OP1(T

−1/2+ρ+τ ). (25)

Since maxt≤T ||∇Yt−1|| = OP1 (T τ ) by Lemma 6(b), it follows that supDδaγT

¯̄
edt − εt − T 1/2δtηt

¯̄
=

oP1
¡
T 1/2

¢
given the assumptions on ρ and τ . This is a uniform version of the hypothesis of

Lemma 8.
Second, we verify that supDδaγT

PT
t=1 (1− δt) |edt |ν+1 = OP1 (T ) as required by Lemma 10.

Indeed, according to (25) it holds uniformly onDδaγ
T that (1− δt) |edt |ν+1 ≤ (1− δt) 4

ν [|εt|ν+1+
||γ∗ − γ||ν+1 ||∇Yt−1||ν+1+(δt−1)ν+1OP1

¡
T 1/2

¢
+ oP1 (1)] due to the choices ρ (ν + 1) ≤ 1/2

and ρ + τ < 1/2. Further, with ν + 1 ≤ r we have E|εt|ν+1 < ∞, so that
PT
t=1 |εt|ν+1 =

OP1 (T ) and
PT
t=1 ||∇Yt−1||ν+1 = OP1 (T ) by Lemma 6(b), while

PT
t=1(δt−1)

ν+1 ≤ kν+1NT =
OP1 (1). These give the required uniform order of

PT
t=1 (1− δt) |edt |ν+1. Having verified the

conditions of Lemma 10, we obtain the orders of magnitude of the suprema in (a).
In item (b), 0 ≤ PT

t=1 δtδt−1Ψ
δ
Tt(1 − Ψδ

Tt) ≤ NT
PT
t=1 δt(1 − Ψδ

Tt) ≤ OP1(T−(ν−2)/2) by
(a). Thus, it remains to evaluate

PT
t=1(1 − δt)δt−1Ψδ

Tt(1 − Ψδ
Tt) ≤

PT
t=1(1 − δt)δt−1Ψδ

Tt.
From the first equation in (19) written for Ψδ

Tt and e
d
t , multiplied by δt−1, and summed over
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t, the last summation is seen not to exceed

OP1(T
−3/2)

TP
t=1
(1− δt) δt−1 +OP1(T

−3/2)
TP
t=1
(1− δt) δt−1|edt |ν+1,

where
PT
t=1 (1− δt) δt−1 ≤ kNT = OP1 (1) and

PT
t=1 (1− δt) δt−1|edt |ν+1 is dominated by

4ν
∙
max

t:δt−1>0
|εt|ν+1 + ||γ∗ − γ||ν+1 max

t:δt−1>0
||∇Yt−1||ν+1

¸
NT +OP1(T

ρ(ν+1))(NT )
ν+2 + oP1 (1) ,

which is OP1(T
ρ(ν+1)), ρ (ν + 1) ≤ 1/2, according to Lemma 7. Combining the above orders

of magnitude delivers item (b).
Item (c) with oP1 (1) = OP1

¡
T τ−1/2¢ follows from item (a) and Lemma 12 with d(x) =

Ψδ
T (ξ(x)), GT = DT . Further, item (c) and the standard properties of

¡
α̂Y , γ̂

0
Y

¢0
im-

ply that supDT ||Ψa,γT || = OP1 (1), supDT |ΨaT | = OP1
¡
T τ−1/2¢ and supDT ||γ∗ − Ψγ

T || =
OP1

¡
T−1/2

¢
. These are useful in a derivation similar to that of (25), but this time invoking

for supDT ||AT (XΨ
t−1 −Yt−1)|| Lemma 11 with d(x) = Ψδ

T (ξ(x)), GT = DT and β = 0 :

sup
DT
|eΨt − εt − T 1/2δtηt| ≤ OP1 (1) δt−1 +OP1(T

τ−1/2) + sup
DT
||γ∗ −Ψγ

T ||maxt≤T
||∇Yt−1||

= OP1 (1) δt−1 +OP1(T
τ−1/2), (26)

since maxt≤T ||∇Yt−1|| = OP1(T τ ) by Lemma 6(a). From here supDT ,t≤T |eΨt | = OP1
¡
T 1/2

¢
, andPT

t=1Ψ
δ
Tt|eΨt | ≤

PT
t=1 |Ψδ

Tt − δt||eΨt |+
PT
t=1 δt|eΨt |

≤ max
t≤T

|eΨt |(
PT
t=1 |Ψδ

Tt − δt|+NT ) = OP1(T 1/2)(OP1(T−1/2) +OP1 (1))

uniformly on DT , from where item (d).
Finally, item (e) can be derived starting from

sup
DT

°°°³Ψθ
T ,Ψ

σ
T

´
− T−1PT

t=1 (δt, 1− δt) (e
Ψ
t )
2
°°° = √2T−1 sup

DT

¯̄̄PT
t=1(Ψ

δ
Tt − δt)(e

Ψ
t )
2
¯̄̄

≤
√
2T−1 sup

DT ,t≤T
(eΨt )

2 sup
DT

PT
t=1 |Ψδ

Tt − δt| = OP1(T−1/2).

Next, by applying to u = eΨt and v = εt + T
1/2δtηt the inequality |u2 − v2| ≤ |u− v|2 +

2 |u− v| |v|, and then (26) to evaluate |u− v|, it is seen that

sup
DT

°°°T−1PT
t=1 (1− δt, δt)

h
(eΨt )

2 − (εt + T 1/2δtηt)2
i°°° = OP1(T 2τ−1).

Inserting τ = r−1 ≤ 1/4 and combining with the previous display concludes the proof of (e).
¥

Lemma 14 Let Assumption M(b) be satisfied with r ≥ 5, and let the arguments of ΨT
be collected in W =

©
dt, a, γi,λ, θ

2,σ2 : t = 1, ..., T ; i = 1, ..., k
ª
. Then, for 4 ≤ ν ≤ r − 1

and ρ < 3/5, ||(ΨT )0ξ||1 =
P
w∈W

P
v∈W |(ΨvT )0w| satisfies supx∈DT ||(ΨT )0ξ|ξ=ξ(x)||1 ≤ oP1 (1) ,

where ξ (x) is the function defined in the introduction to section A.4.
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In the proof the symbols (·)0w and ∂(·)/∂w are used interchangeably for Jacobian matrices,
and preference is given to the latter symbol when there is a possibility of confusion with matrix
transposition. All evaluations are uniform on DT , but for brevity sup-signs are omitted. The
hypothesis with r ≥ 5 implies that maxt≤T |εt| = OP1 (T τ ) with τ = 1/5.
Proof. 1. Derivatives of Ψδ

Tt : ||(Ψδ
T )
0
ξ||1 =

P
w∈W

PT
t=1

¯̄
(Ψδ

Tt)
0
w

¯̄ ≤ OP1 ¡T ρ+τ−1/2¢. In
the expressions for the derivatives, Ψδ

Tt

¡
1−Ψδ

Tt

¢
appear frequently and are abbreviated to

ψδ
Tt. As a corollary of Lemma 13(a),

PT
t=1 ψ

δ
Tt ≤ OP1

¡
T−1/2

¢
, which is essential for obtaining

convergence of the derivatives to 0.
It is checked directly that (Ψδ

Tt)
0
λ = ψδ

TtTλ
−1 (T − λ)−1 , so that ||(Ψδ

T )
0
λ||1 =

PT
t=1

¯̄
(Ψδ

Tt)
0
λ

¯̄ ≤
OP1

¡
T−1/2

¢
on DT . Further, for an argument v different from λ,

(Ψδ
Tt)

0
v = ψδ

Tt(ln fν)
0
v, (27)

where fν = φν(e
d
t ;σ

2 + Tθ2)/φν(e
d
t ;σ

2). The cases v =
¡
σ2, θ2

¢
and v = (d0, a, γ0) are con-

sidered separately. First, for v =
¡
σ2, θ2

¢
the derivatives in (ln fν)

0
v are OP1 (1) on DT as in

(24), and thus,
PT
t=1 ||(Ψδ

Tt)
0
v|| ≤ OP1 (1)

PT
t=1 ψ

δ
Tt ≤ OP1

¡
T−1/2

¢
. Second,

(ln fν)
0
(d0,a,γ0) = (ν + 1)

h
h(edt , νσ

2) + h(edt , ν(σ
2 + Tθ2))

i
(edt )

0
(d0,a,γ0),

where, with h (x, y) = x/y[1 + x2/y]−1, the factor in front of the derivative is bounded in
absolute value by (ν + 1) {(νσ2)−1/2+[ν(σ2+Tθ2)]−1/2}/2 due to the inequality |h (x, y) | ≤
(4y)−1/2 , y > 0, and on DT does not exceed the constant K = 2 (ν + 1) /

√
ν/σ2ε, while the

derivative has components

(edt )
0
(a,γ0) = ATX

d
t−1 and (e

d
t )
0
ds = (T

−1/2a, γ0)Its∆Xs, s = 1, ..., T, (28)

with Its the vector of indicators
¡
I{s≤t−1}, I{s=t−1}, ..., I{s=t−k}

¢0
. Hence, recalling (27),

||(Ψδ
T )
0
(a,γ0)||1 =

TP
t=1
||(Ψδ

Tt)
0
(a,γ0)||1 ≤ Kmax

t≤T
||ATXdt−1||1

TP
t=1

ψδ
Tt ≤ OP1(T τ−1/2)

since the maximum is uniformly bounded by OP1 (T
τ ) , Lemma 11(c, β = ρ). Similarly, by

retaining only terms corresponding to unit entries of Its,

||(Ψδ
T )
0
d||1 =

TP
t=1

TP
s=1

|(Ψδ
Tt)

0
ds | ≤ K

TP
t=1

ψδ
Tt

h
|a| T−1/2 P

s≤t−1
|∆Xs|+ ||γ||

t−1P
s=t−k

|∆Xs|
i
. (29)

Further details are worked out using ∆Xs = ∆Ys + T
1/2δsηs and |∆Xs| ≤ maxt≤T |∆Yt| +

T 1/2δs |ηs|. On the one hand,
P
s≤T−1 |∆Xs| ≤ OP1

¡
T τ+1

¢
+T 1/2

PT
t=1 δs |ηs| = OP1

¡
T τ+1

¢
,

so that
PT
t=1 ψ

δ
Tt

P
s≤t−1 |∆Xs| ≤ OP1

¡
T τ+1

¢PT
t=1 ψ

δ
Tt ≤ OP1

¡
T τ+1/2

¢
, and since |a| ≤

T−1/2+ρ on DT , the contribution to (29) of terms involving this factor is OP1
¡
T ρ+τ−1/2¢.

On the other hand,
Pt−1
s=t−k |∆Xs| ≤ kmaxt≤T |∆Yt| + T 1/2δs−1maxt:δt=1 |ηt| = OP1 (T τ ) +

δs−1OP1
¡
T 1/2

¢
, so that

PT
t=1 ψ

δ
Tt

Pt−1
s=t−k |∆Xs| ≤ OP1 (T τ )

PT
t=1 ψ

δ
Tt+OP1(T

1/2)
PT
t=1 δt−1ψ

δ
Tt ≤

OP1
¡
T τ−1/2¢ by Lemma 13(b) and the choice ν ≥ 4. Combining the obtained orders of mag-

nitude gives ||(Ψδ
T )
0
ξ||1 ≤ OP1

¡
T ρ+τ−1/2¢ uniformly on DT .
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At a later step it is used that
P
w∈W

PT
t=1 δt

¯̄
(Ψδ

Tt)
0
w

¯̄ ≤ OP1 ¡T ρ−1/2¢: everywhere abovePT
t=1 ψ

δ
Tt ≤ OP1(T−1/2) becomes

PT
t=1 δtψ

δ
Tt ≤

PT
t=1 δt|1−Ψδ

Tt| ≤ OP1(T−(ν−2)/2), ν ≥ 4.
2. Since Ψλ

T =
PT
t=1Ψ

δ
Tt, it holds that

P
w∈W |(Ψλ

T )
0
w| ≤

P
w∈W

PT
t=1 |(Ψδ

Tt)
0
w| ≤

OP1
¡
T ρ+τ−1/2¢.
3. Derivatives of Ψa,γT . Recall thatΨa,γT = [

PT
t=1ATX

Ψ
t−1(ATXΨ

t−1)0]−1
PT
t=1ATX

Ψ
t−1∆XΨ

t .

The components ofΨa,γT depend on ξ only throughXΨ
t . With S

Ψ
XX =

PT
t=1ATX

Ψ
t−1(ATXΨ

t−1)0

and with derivatives ∂(.)/∂ds that here happen not to depend on the point d they are eval-

uated at, it is checked that (Ψa,γT )0w equals
£
SΨXX

¤−1
postmultiplied by

AT
TP
t=1

TP
s=1

½
∂Xd

t−1
∂ds

£
∆XΨ

t − (ATXΨ
t−1)

0Ψa,γT
¤
+XΨ

t−1

∙
∂∆Xd

t
∂ds

− ∂(Xd
t−1AT )

0

∂ds
Ψa,γT

¸¾
∂Ψδ

Ts
∂w

=
TP
s=1

½
AT

TP
t=s+1

£
Its
£
(ATX

Ψ
t−1)

0Ψa,γT −∆XΨ
t

¤
+XΨ

t−1I0tsATΨ
a,γ
T

¤−XΨ
s−1

¾
∆Xs

∂Ψδ
Ts

∂w

(a prime denotes transposition). Since T−1SΨXX converges to a non-singular limit (see the
proof of Lemma 12), the order of magnitude of (Ψa,γT )0w is determined by T−1 times the
expression above. Thus, if Zs denotes the term in braces in this expression, it follows that

||(Ψa,γT )0w|| ≤ OP1
¡
T−1

¢ TP
s=1

kZsk |∆Xs| |(Ψδ
Ts)

0
w|, (30)

where ||Zs|| ≤ 2||
PT
t=s+1AT Its(ATXΨ

t−1)0|| ||Ψa,γT ||+ ||PT
t=s+1AT Its∆XΨ

t ||+ ||ATXΨ
s−1||, andPT

t=s+1AT Its(ATXΨ
t−1)0 = (T−1/2

PT
t=s+1X

Ψ
t−1,XΨ

s ,X
Ψ
s+1I{s+1≤T}, ...,XΨ

s+k−1I{s+k−1≤T})0AT
has norm bounded by

¡
T 1/2 + k

¢
maxs≤T

°°ATXΨ
s

°°, while the norm of
PT
t=s+1AT Its∆XΨ

t =

AT (
PT
t=s+1∆X

Ψ
t ,∆X

Ψ
s+1I{s+1≤T}, ...,∆XΨ

s+kI{s+k≤T})0 does not exceed (k + 2)maxs≤T
°°ATXΨ

s

°°.
Hence, accounting also for the relation ||Ψa,γT || ≤ OP1 (1) implied by Lemma 13(c), it obtains
that maxs≤T ||Zs|| ≤ OP1

¡
T 1/2

¢
maxs≤T

°°ATXΨ
s

°°. Inserting this into (30) together with
|∆Xt| ≤ |∆Yt|+ T 1/2δt|ηt| gives

||(Ψa,γT )0w|| ≤ OP1(T−1/2)max
s≤T

°°ATXΨ
s

°°½max
s≤T

|∆Ys|
TP
s=1

|(Ψδ
Ts)

0
w|+ T 1/2 max

t:δs=1
|ηs|

TP
s=1

δs|(Ψδ
Ts)

0
w|
¾
.

Since maxs≤T
°°ATXΨ

s

°° ≤ OP1 (T
τ ) (Lemma 11(c), β = 0), maxs≤T |∆Ys| = OP1 (T

τ )

(Lemma 6) and maxt:δs=1 |ηs| = OP1 (1) (Lemma 7), while
P
w∈W ||(Ψδ

T )
0
w||1 ≤ OP1

¡
T ρ+τ−1/2¢

and
P
w∈W

PT
s=1 δs

¯̄
(Ψδ

Ts)
0
w

¯̄ ≤ OP1 ¡T ρ−1/2¢, it obtains thatPw∈W ||(Ψa,γT )0w|| ≤ OP1
¡
T ρ+τ−1/2¢.

This property is shared by ||(Ψa,γT )0ξ||1.
4. Derivatives of Ψθ

T and Ψ
σ
T . First, (Ψ

θ
T )
0
w = T

−1PT
t=1(Ψ

δ
Tt)

0
w(e

Ψ
t )
2+2T−1

PT
t=1Ψ

δ
Tte

Ψ
t (e

Ψ
t )
0
w,

where

|T−1
TP
t=1
(Ψδ

Tt)
0
w(e

Ψ
t )
2| ≤ T−1max

t≤T
(eΨt )

2
TP
t=1
|(Ψδ

Tt)
0
w| = OP1 (1) ||(Ψδ

T )
0
w||1, and

|T−1
TP
t=1
Ψδ
Tte

Ψ
t (e

Ψ
t )
0
w| ≤ T−1/2

TP
t=1
Ψδ
Tt|eΨt |T−1/2max

t≤T
|(eΨt )0w| ≤ OP1

¡
T−1/2

¢
max
t≤T

|(eΨt )0w|,
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the latter inequality by Lemma 13(d). From these evaluations and ||(Ψδ
T )
0
ξ||1 ≤ OP1

¡
T ρ+τ−1/2¢

it follows by summation over w ∈W that

||(Ψθ
T )
0
ξ||1 ≤ OP1(T−1/2)

P
w∈W

max
t≤T

|(eΨt )0w|+OP1(T ρ+τ−1/2). (31)

Thus, it remains to study (eΨt )
0
w. WithW

0 =W\©λ,σ2, θ2ª , these are (eΨt )0w =Pv∈W 0(edt )
0
v(Ψ

v
T )
0
w

and (edt )
0
v are components of the derivatives (28) evaluated at d =

¡
Ψδ
T1, ...,Ψ

δ
TT

¢0
and

(a, γ0)0 = Ψa,γT . For any w ∈W,

|
TP
h=1

(edt )
0
dh
(Ψδ

Th)
0
w| = |T−1/2ΨaT

P
h≤t−1

∆Xh(Ψ
δ
Th)

0
w +

t−1P
h=t−k

(Ψγ
T )t−h∆Xh(Ψ

δ
Th)

0
w|

≤ max
h≤T

|∆Xh|
"
T−1/2|ΨaT |

TP
h=1

|(Ψδ
Th)

0
w|+ ||Ψγ

T ||
t−1P
h=t−k

|(Ψδ
Th)

0
w|
#
,

where maxh≤T |∆Xh| ≤ maxs≤T |∆Ys|+T 1/2maxs:δs=1 |ηs| = OP1
¡
T 1/2

¢
, |ΨaT | ≤ OP1(T−1/2)

and ||Ψγ
T || ≤ OP1 (1) on DT , so that

P
w∈W

max
t≤T

|
TP
h=1

(edt )
0
dh
(Ψδ

Th)
0
w| ≤ OP1(T 1/2)[OP1

¡
T−1

¢
+ k||Ψγ

T ||]
P
w∈W

TP
h=1

|(Ψδ
Th)

0
w| ≤ OP1(T ρ+τ ).

(32)

In view of the expression for (eΨt )
0
w and of (31),

||(Ψθ
T )
0
ξ||1 ≤ OP1(T−1/2)max

t≤T
||(edt )0(a,γ0)(Ψa,γT )0ξ||1 +OP1(T ρ+τ−1/2), (33)

where (edt )
0
(a,γ0) is read as a row vector. The maximum is bounded by OP1

¡
T ρ+2τ−1/2¢ since

it does not exceed ||(Ψa,γT )0ξ||1maxt≤T ||ATXΨ
t−1||1 and the two factors are bounded respec-

tively by OP1
¡
T ρ+τ−1/2¢ and OP1 (T τ ). Hence, ||(Ψθ

T )
0
ξ||1 ≤ OP1(T

ρ+2τ−1 + T ρ+τ−1/2) =
OP1(T

ρ+τ−1/2).
The order of magnitude of ||(Ψσ

T )
0
ξ|| follows from a modification of the argument for

Ψθ
T . Now (Ψσ

T )
0
w = −T−1PT

t=1(Ψ
δ
Tt)

0
w(e

Ψ
t )
2 + 2T−1

PT
t=1(1 − Ψδ

Tt)e
Ψ
t (e

Ψ
t )
0
w, and the first

summation has already been shown to be OP1(T
ρ+τ−1/2). For the second one, the following

evaluation can be used:

|T−1
TP
t=1
(1−Ψδ

Tt)e
Ψ
t (e

Ψ
t )
0
w| ≤ max

t≤T
|(1−Ψδ

Tt)e
Ψ
t |T−1

TP
t=1
|(eΨt )0w|.

The maximum does not exceed maxt:δt=0 |eΨt |+maxt≤T |eΨt |
PT
t=1 |δt −Ψδ

Tt| ≤ OP1 (T τ ) , see
(26). Regarding the summation, instead of (32) and (33), now

P
w∈W

TP
t=1
|
TP
h=1

(edt )
0
dh
(Ψδ

Th)
0
w| ≤ OP1(T

1/2)[OP1 (1) + k||Ψγ
T ||]||(Ψδ

T )
0
ξ||1 = OP1(T ρ+τ ),

||(Ψσ
T )
0
ξ||1 ≤ OP1

¡
T τ−1¢ TP

t=1
||(edt )0(a,γ0)(Ψa,γT )0ξ||1 +OP1(T ρ+τ−1/2),
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so that ||(Ψσ
T )
0
ξ||1 ≤ T τ ||(Ψa,γT )0ξ||1 T−1

PT
t=1 ||ATXΨ

t−1||1+OP1(T ρ+τ−1/2) = OP1
¡
T ρ+2τ−1/2¢

since
PT
t=1 ||ATXΨ

t−1||1 ≤
PT
t=1 ||ATYt−1||1 +

PT
t=1 |XΨ

t−1 − Yt−1|+ k
PT
t=1 |∆Yt −∆XΨ

t | ≤
OP1 (T ) by Lemma 11(a),(b) with β = 0.

To summarize, among the considered finitely many blocks of the Jacobian matrix the
highest magnitude order is OP1

¡
T ρ+2τ−1/2¢, which for ρ < 3/5 and τ = 1/5 is oP1 (1). ¥

A.4.2 Proof of Theorem 5

The argument is similar to that for Theorem 2. Let ρ > 0 be chosen sufficiently small
for the hypotheses of Lemmas 13 and 14 to be satisfied. For x ∈ DT and ξ (x) defined in
the introduction to section A.4, let ΞT = ξ−1 ◦ ΨT ◦ ξ; it is well-defined P1-a.s. Further,
let ΞtrT : DT → DT be obtained from ΞT by truncating it as follows: (ΞtrT )δ(x) = ΞδT (x)
if ΞδT (x) ∈ Dδ

T and (Ξ
tr
T )

δ(x) = T ρ−1/2ΞδT (x)/Σ
T
t=1|ΞδTt(x)| otherwise, (ΞtrT )γ(x) = ΞγT (x) if

ΞγT (x) ∈ Dγ
T and (Ξ

tr
T )

γ(x) = γ∗+(Ξ
γ
T (x)−γ∗)/||ΞγT (x)−γ∗|| otherwise, and ΞλT , ΞaT , ΞθT , ΞσT

defined similarly to the components ofΘtrT in the proof of Theorems 2 and 4, see A.3. Then Ξ
tr
T

has a random fixed point κT on DT by Th. 10 in Bharucha-Reid (1976). For outcomes such
that ΞT (κT ) is interior for DT no truncation takes place in the calculation of ΞtrT , and hence,
ΨT (ξ(κT )) = ξ(κT ), i.e. ξT (κT ) is a fixed point of ΨT . From Lemma 13(a),(c),(e) we have
that ΨT (ξ(κT )) = ξ(κ∞) + oP1 (1) and ΞT (κT ) = κ∞ + oP1(1), with κ∞ := (0T+2, γ

0∗, 1,σ2ε)0

belonging to the interior of DT . Moreover, according to the same lemma, ΞδT (κT ) and ΞaT (κT )
tend to zero at rates faster than the shrinkage rates of the components Dδ

T and DaT . Therefore,
ΞT (κT ) is interior for DT with P1-probability approaching 1, and hence, P1(ΨT (ξ(κT )) =
ξ(κT )) → 1. The sequence ξT whose existence is asserted in (i) can now be defined as
ξT := ξ(κT ).

Items (ii) and (iii) follow from κT ∈ DT and Lemma 13. Item (d) follows once no-
ticed that the ADF statistics based on the de-jumped data are ADFΨ

α̂ = T 1/2ΨaT (ξT ) (1 −Pk
i=1Ψ

γi
T (ξT ))

−1 and ADFΨ
t = Ψ

a
T (ξT ) (σ̂

2
Ψ (ξT ) v11)

−1/2, where v11 is the first entry of the
matrix [

PT
t=1X

Ψ
t−1(XΨ

t−1)0]−1 evaluated at ξT . According to Lemma 12, κT ∈ DT implies
that these statistics have the same asymptotic distribution as those based on ∆Yt.

Uniqueness is addressed next. Fix an arbitrary ² ∈ (0, 1) . In view of Lemmas 14 and
7, ||(ΞT )0x||1 ≤ ||(ΨT )0ξ|ξ=ξ(x)||1max(HT ,H−1T ) ≤ oP1 (1) uniformly on DT . Therefore, we can
find a set B1 with P1(B1) > 1 − ²/4 and an integer T1 such that, for T > T1 and outcomes
in B1, ||(ΞT )0x||1 ≤ 1/2 for all x ∈ DT . Say that x1, x2 ∈ DT are fixed points of ΞT for some
outcome ω. Since DT is convex, by the mean-value theorem ΞT (x1)−ΞT (x2) = (ΞT )0∗(x1−x2),
where (ΞT )

0∗ is the Jacobian matrix (ΞT )0x each row of which is evaluated at some point in
DT , in general varying across rows. From here and the fixed-point property, ||x1 − x2||∞ =
||ΞT (x1)−ΞT (x2) ||∞ ≤ ||x1−x2||∞ supx∈DT ||(ΞT )0x||1, and for ω ∈ B1 and T > T1 it follows
that x1 = x2, i.e. ΞT has at most one fixed point on DT . According the first part of the proof
we can find a set B2 ⊂ B1 with P1(B2) > 1 − ²/3 and an integer T2 ≥ T1 such that, on B2
and for T > T2, κT is the unique fixed point of ΞT on DT .

Further, if ξ1T and ξ2T satisfy item (i), there exist a set B3 with P1(B3) > 1− ²/3 and an
integer T3 such that, on B3 and for T > T3, it holds that ΨT

¡
ξiT
¢
= ξiT , i = 1, 2. If they

also satisfy items (ii) to (iv), so that ΨT
¡
ξiT
¢
= ξ(κ∞)+ oP1 (1) again at rate faster than the

shrinkage rate for Dδ
T and DaT , then we can find a set B4 with P1(B4) > 1−²/3 and an integer T4

such that, for T > T4 and outcomes in B4, ξ−1(ξiT ) ∈ DT . On B3∩B4 and for T > max(T3, T4),
ξ−1(ξiT ) are fixed points of ΞT on DT , while on ∩4i=2Bi with P1(∩4i=2Bi) > 1 − ² and for
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T > max(T2, T3, T4), they must be equal to κT and to each other. Since ² is arbitrary,
uniqueness with P1-probability approaching one is proved.

Finally, consider computation. In view of Lemma 13, there exist a set B5 with P1(B5) >
1−²/3 and an integer T5 such that, on B5 and for T > T5, ΞT (DT ) ⊂ DT . On the other hand,
from Theorems 2 and 4, xT0 := ξ−1(ξT0)

P1→ κ∞ at faster rate than the shrinkage rate for
Dδ
T and DaT . Thus, on some B6 ⊂ B5 with P1(B6) > 1− ²/2 and for T greater than some T6,
we have that xT0 ∈ DT . From the first part of the proof we know that we can find T7 ≥ T2
and B7 ⊂ B2 with P1(B7) > 1 − ²/2 such that, on B7 and for T > T7, ΞT is Lipshitz with
modulus 1/2. Then, on B6 ∩ B7 and for T > max(T6, T7), ΞT is a contraction of DT with
unique fixed point κT , and by Banach’s fixed point theorem xTi → κT as i → ∞. Hence,
also ξTi = ξ(xTi)→ ξ (κT ) = ξT as i→∞. ¥
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Table 1. Empirical size of standard ADF tests (ADF ) and of the modified ADF tests (ADF δ and ADFΨ). Raw data.

Model S0 (no level shifts) Model S4 (four level shifts at fixed fractions) Model Sr (random level shifts)
T γ ADFα̂ ADFt ADF δ

α̂ ADF δ
t ADFΨα̂ ADFΨt ADFα̂ ADFt ADF δ

α̂ ADF δ
t ADFΨα̂ ADFΨt ADFα̂ ADFt ADF δ

α̂ ADF δ
t ADFΨα̂ ADFΨt

100 −0.5 5.1 5.1 5.0 5.0 5.8 5.9 3.0 3.2 3.9 4.0 6.5 6.9 3.6 3.6 4.3 4.4 6.3 6.5
0 5.2 5.1 5.2 5.2 5.7 5.7 4.9 4.9 5.4 5.3 6.9 6.7 4.9 4.8 5.2 5.3 6.8 7.0

0.5 5.5 5.4 5.5 5.4 6.0 5.7 3.6 3.7 4.0 3.8 5.5 5.4 3.5 3.5 4.0 3.9 5.4 5.4

200 −0.5 5.3 5.4 5.2 5.2 5.7 5.7 3.0 3.1 4.9 5.1 6.2 6.3 3.9 3.9 4.5 4.6 5.6 5.8
0 4.6 4.6 4.8 4.7 5.0 4.9 4.8 4.8 5.2 5.2 5.8 5.8 4.8 4.7 5.2 5.2 5.7 5.6

0.5 5.0 4.8 4.9 4.8 5.2 5.0 3.3 3.3 4.3 4.3 4.9 4.9 3.7 3.6 4.7 4.7 5.4 5.3

400 −0.5 4.9 5.1 4.9 5.0 5.1 5.2 2.6 2.8 4.7 4.8 5.1 5.2 3.5 3.6 4.7 4.6 5.2 5.0
0 4.8 4.8 4.8 4.8 4.9 4.9 4.3 4.4 4.8 4.9 5.0 5.1 4.8 4.7 5.1 5.0 5.3 5.2

0.5 5.2 5.2 5.0 5.1 5.2 5.2 3.5 3.4 5.0 5.0 5.3 5.3 3.5 3.5 5.1 4.9 5.2 5.1

Notes: ADFδ and ADFΨ denote the ADF tests under rough de-jumping and finer de-jumping. In both cases for estimation a Gaussian distribution is used as a proxy for

Student-t with large ν. Asymptotic critical values at the 5% level as reported in Fuller (1976) are employed.

Table 2. Size-adjusted power of standard ADF tests (ADF ) and of the modified ADF tests (ADF δ and ADFΨ). Raw data.

Model S0 (no level shifts) Model S4 (four level shifts at fixed fractions) Model Sr (random level shifts)
T γ ADFα̂ ADFt ADF δ

α̂ ADF δ
t ADFΨα̂ ADFΨt ADFα̂ ADFt ADF δ

α̂ ADF δ
t ADFΨα̂ ADFΨt ADFα̂ ADFt ADF δ

α̂ ADF δ
t ADFΨα̂ ADFΨt

100 −0.5 50.7 51.5 48.1 48.2 45.3 47.5 0.0 0.0 10.2 9.9 12.5 12.3 10.2 10.2 12.0 12.0 14.9 14.8
0 49.3 50.1 46.1 46.1 45.9 46.7 0.2 0.2 19.3 19.4 19.8 20.1 13.3 13.5 19.9 20.1 20.0 19.8

0.5 43.0 43.8 42.5 42.7 42.0 42.6 10.1 10.1 27.3 27.9 30.0 30.0 23.7 23.4 29.1 28.9 30.4 30.7

200 −0.5 47.9 48.9 45.8 47.0 45.2 45.9 0.0 0.0 20.0 19.7 25.0 25.9 9.1 9.2 23.5 23.2 29.2 29.0
0 51.8 52.0 49.3 50.1 49.3 50.0 0.2 0.2 34.1 34.9 34.0 35.1 13.9 14.1 35.6 35.6 36.7 36.4

0.5 47.1 47.7 46.9 47.6 47.0 47.5 10.8 10.4 40.9 41.0 43.2 42.6 24.3 24.5 38.6 38.8 41.1 41.7

400 −0.5 49.2 48.8 47.7 47.5 47.7 48.0 0.0 0.0 38.0 37.6 38.3 38.4 9.7 9.8 38.8 38.8 39.4 40.2
0 50.3 50.4 50.8 50.5 50.1 50.3 0.2 0.2 44.7 44.4 44.9 44.1 12.9 13.2 42.5 43.5 42.6 43.2

0.5 47.0 47.1 47.1 47.3 46.9 46.9 11.0 11.2 45.4 46.3 45.4 45.7 24.3 24.7 44.3 45.6 44.9 45.9

Notes: Power is evaluated at α=1-c/T with c=7. See also Table 1.



Table 3. Empirical size of standard ADF tests (ADF ) and of the modified ADF tests (ADF δ and ADFΨ). GLS de-trended data

Model S0 (no level shifts) Model S4 (four level shifts at fixed fractions) Model Sr (random level shifts)
T γ ADFα̂ ADFt ADF δ

α̂ ADF δ
t ADFΨα̂ ADFΨt ADFα̂ ADFt ADF δ

α̂ ADF δ
t ADFΨα̂ ADFΨt ADFα̂ ADFt ADF δ

α̂ ADF δ
t ADFΨα̂ ADFΨt

100 −0.5 6.9 7.4 6.9 7.4 7.1 7.6 2.8 3.2 4.7 5.1 5.3 5.8 4.7 4.9 5.0 5.5 5.6 6.1
0 7.0 7.5 7.1 7.6 7.3 7.8 6.0 6.3 7.1 7.4 6.9 7.6 7.0 7.3 7.3 7.9 7.4 8.0

0.5 7.0 7.0 7.0 7.0 7.3 7.2 4.0 4.2 4.6 4.8 5.2 5.4 4.4 4.5 5.1 5.3 5.8 5.9

200 −0.5 5.8 6.2 5.6 6.1 6.0 6.3 2.0 2.1 4.7 5.0 5.7 6.1 3.7 4.1 4.6 4.9 5.2 5.6
0 5.3 5.6 5.5 5.7 5.4 5.7 5.2 5.5 5.5 5.6 5.6 5.8 5.3 5.5 5.8 6.1 6.0 6.2

0.5 5.8 5.8 5.7 5.8 5.9 5.9 3.3 3.3 5.1 5.3 5.8 5.8 3.2 3.4 5.0 5.3 5.6 5.8

400 −0.5 4.9 5.2 4.8 5.0 4.9 5.2 1.8 1.9 4.3 4.6 4.6 4.9 2.8 3.0 4.6 4.9 4.8 5.0
0 5.0 5.1 5.0 5.2 5.0 5.2 4.1 4.4 4.8 5.1 5.0 5.2 4.7 5.0 5.0 5.3 5.1 5.4

0.5 4.9 5.0 4.9 5.1 4.9 5.1 2.6 2.7 4.7 4.8 4.9 5.0 2.7 2.8 4.7 4.8 4.9 5.0

Notes: Asymptotic critical values at the 5% level as reported in Ng and Perron (2001) are employed. See also Table 1.

Table 4. Size-adjusted power of standard ADF tests (ADF ) and of the modified ADF tests (ADF δ and ADFΨ). GLS de-trended data.

Model S0 (no level shifts) Model S4 (four level shifts at fixed fractions) Model Sr (random level shifts)
T γ ADFα̂ ADFt ADF δ

α̂ ADF δ
t ADFΨα̂ ADFΨt ADFα̂ ADFt ADF δ

α̂ ADF δ
t ADFΨα̂ ADFΨt ADFα̂ ADFt ADF δ

α̂ ADF δ
t ADFΨα̂ ADFΨt

100 −0.5 49.6 50.5 47.2 47.7 47.4 48.3 4.9 5.3 12.0 12.5 13.3 13.6 11.9 12.0 16.1 15.7 16.8 16.3
0 47.4 47.9 44.9 46.0 44.8 45.5 12.5 16.6 24.6 24.6 25.1 24.9 15.1 15.5 25.1 25.3 24.4 24.4

0.5 38.2 38.9 37.4 38.0 37.5 38.2 27.7 28.2 32.5 33.4 32.5 33.1 26.9 27.4 31.4 31.7 31.2 31.7

200 −0.5 49.7 50.4 48.7 49.6 49.0 49.5 5.3 5.4 27.8 28.1 32.0 32.1 10.3 10.5 29.4 29.4 34.4 34.4
0 51.2 51.2 50.3 50.3 50.2 50.6 12.1 12.5 42.6 42.9 42.2 42.3 17.6 17.9 40.5 41.3 40.2 40.9

0.5 43, 4 43.7 42.9 43.4 42.8 43.4 30.5 30.9 39.0 39.0 39.4 39.8 29.9 29.6 40.6 40.6 41.0 41.0

400 −0.5 50.7 50.7 50.1 50.5 50.2 50.4 4.6 5.0 44.5 45.3 45.8 45.7 11.0 11.0 44.0 44.1 45.5 45.1
0 49.9 50.3 49.6 49.7 49.5 49.6 14.0 13.9 48.9 48.5 48.2 48.2 17.2 17.0 47.0 46.6 46.9 47.0

0.5 47.3 48.0 47.0 47.5 47.2 47.6 33.0 34.2 46.9 47.2 46.8 47.5 31.8 32.5 46.7 47.8 46.7 47.9

Notes: Power is evaluated at α=1-c/T with c=-13.5. See also Table 1.



Table 5. Size-adjusted power of standard ADF tests (ADF ) and of the modified ADF tests
(ADF δ and ADFΨ) with ν = 8 and ν =∞. Model S4 with t (10) innovations

ν = 8 ν =∞
T γ ADFα̂ ADFt ADF δ

α̂ ADF δ
t ADFΨα̂ ADFΨt ADF δ

α̂ ADF δ
t ADFΨα̂ ADFΨt

100 −0.5 0.0 0.0 0.2 0.2 0.3 0.3 8.7 8.8 11.0 11.5
0 0.5 0.5 1.3 1.3 1.5 1.5 17.0 16.9 17.4 17.6

0.5 13.7 13.4 14.8 14.6 15.2 15.2 24.6 25.3 27.1 27.9

200 −0.5 0.0 0.0 0.8 0.7 1.6 1.6 17.1 16.9 20.4 20.7
0 0.6 0.5 5.7 5.7 5.8 5.8 29.1 30.0 29.8 29.8

0.5 13.7 13.1 18.6 18.3 19.8 20.2 35.2 35.1 36.7 37.7

400 −0.5 0.0 0.0 8.4 8.4 16.6 16.4 26.9 26.7 28.1 28.0
0 0.5 0.4 26.9 27.4 27.1 27.7 36.4 36.5 36.5 36.7

0.5 15.0 15.0 30.2 30.8 35.9 35.9 43.1 44.3 42.9 44.3

Notes: Power is evaluated at α=1-c/T with c=-7. See also Table 1


